A R T I C L E S
You et al.
>10 nm, which is comparable to that of proteins and other
biomacromolecules, with concomitant large surface areas for
efficient protein binding.13 Third, the surface properties of
nanoparticles can be conveniently tailored by appropriate
selection of ligand functionality, providing versatility in the
creation of surface-specific receptors.14 Indeed, MPCs and
MMPCs have shown interesting application in the multivalent
binding of biomacromolecular targets.15,16
R-Chymotrypsin (ChT), a serine protease of 25 kDa, provides
an excellent system for studying the protein surface recognition
as it is an extensively characterized protein with well-defined
geometry, surface “hot spot”, and enzymatic activity. Our
previous investigations have demonstrated that simple carboxylic
acid-terminated nanoparticles (with either Au or CdSe core)
could target ChT through complementary electrostatic interac-
tions, resulting in the inhibition of ChT activity.17 However, to
allow more pragmatic uses of nanoparticles for regulation of
protein-protein interaction, a prerequisite is the modification
of the nanoparticle surface to better mimic protein surface
functionality. This complexity would provide control over
protein specificity and protein stability, giving insight into issues
important in modulating protein-protein interactions such as
complementary electrostatic interaction, hydrophobic interaction,
and steric effect. Furthermore, through these studies we would
be able to address other crucial issues, such as the factors
contributing to stabilization/denaturation of MMPC-bound
proteins.
Amino acids provide an attractive means for generating
structural diversity.18 In the current study, we have fabricated a
series of L-amino acids-functionalized gold nanoparticles and
examined their interaction with ChT (Figure 1). The amino acid-
decorated surfaces represent the simplest mimics of protein
surfaces. Their interaction with proteins thus exhibits much more
resemblance with the naturally occurring protein-protein
systems. In this study, we have found that the interactions
between ChT and these MMPCs depend on the surface
Figure 1. (a) Amino acid-decorated cluster surface that consists of
carboxylic acid recognition elements as well as extra functions for
perturbation. (b) The relative sizes of amino acid-functionalized gold
nanoparticles and ChT. The surface of ChT is patterned with the electrostatic
surface potential, showing basic and acidic domains on protein surface.
composition of nanoparticles. Significantly, the binding affinity
as well as the stability of the protein is regulated by the charge
and the hydrophobicity of amino acid side chains in the
nanoparticles. Therefore, it is possible to control the association/
dissociation and stabilization/denaturation of the protein at the
MMPC interfaces through variation of the extra functionality
in the vicinity of carboxylic acid recognition elements.
Results and Discussion
Fabrication of Amino Acid-Functionalized Gold Nano-
particles. In the past decade, ω-functionalized n-alkanethiols
have been extensively used as building blocks in self-assembled
monolayers on gold.19 While a number of oligopeptide-
functionalized thioligands have been designed and synthesized,20
amino acid-terminated thiol ligands have rarely been reported,21
although the latter provides more fundamental information on
the monolayer construction. For example, variation in amino
acid side chain structure will allow us to probe the effect of
hydrophobic groups (e.g., Leu, Val), additional anionic func-
tionality (e.g., Asp, Glu), cationic groups (e.g., Arg), and
hydrogen-bonding functionality (e.g., Asn, Gln).
(13) (a) Stavens, K. B.; Pusztay, S. V.; Zou, S. H.; Andres, R. P.; Wei, A.
Langmuir 1999, 15, 8337-8339. (b) Hostetler, M. J.; Wingate, J. E.; Zhong,
C.-J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S.
J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.;
Murray, R. W. Langmuir 1998, 14, 17-30.
(14) (a) Li, X.-M.; Huskens, J.; Reinhoudt, D. N. J. Mater. Chem. 2004, 14,
2954-2971. (b) Templeton, A. C.; Wuelfing, M. P.; Murray, R. W. Acc.
Chem. Res. 2000, 33, 27-36.
(15) For some recent reviews, see: (a) Verma, A.; Rotello, V. M. Chem.
Commun. 2005, 303-312. (b) Daniel, M.-C.; Astruc, D. Chem. ReV. 2004,
104, 293-346. (c) Pasquato, L.; Pengo, P.; Scrimin, P. J. Mater. Chem.
2004, 14, 3481-3487. (d) Katz, E.; Willner, I. Angew. Chem., Int. Ed.
2004, 43, 6042-6108. (e) Shenhar R.; Rotello, V. M. Acc. Chem. Res.
2003, 36, 549-561. (f) Sastry, M.; Rao, M.; Ganesh, K. N. Acc. Chem.
Res. 2002, 35, 847-855.
(16) (a) Nam, J.-M.; Stoeva, S. I.; Mirkin, C. A. J. Am. Chem. Soc. 2004, 126,
5932-5933. (b) Verma, A.; Nakade, H.; Simard, J. M.; Rotello, V. M. J.
Am. Chem. Soc. 2004, 126, 10806-10807. (c) Zheng, M.; Huang, X. J.
Am. Chem. Soc. 2004, 126, 12047-12054. (d) Raschke, G.; Kowarik, S.;
Franzl, T.; So¨nnichsen, C.; Klar, T. A.; Feldmann, J.; Nichtl, A.; Ku¨rzinger,
K. Nano Lett. 2003, 3, 935-938. (e) Wilson, R. Chem. Commun. 2003,
108-109. (f) Wang, G.; Zhang, J.; Murray, R. W. Anal. Chem. 2002, 74,
4320-4327. (g) Cao, Y. C.; Jin, R.; Mirkin, C. A. Science 2002, 297,
1536-1540. (h) McIntosh, C. M.; Esposito, E. A.; Boal, A. K.; Simard,
J. M.; Martin, C. T.; Rotello, V. M. J. Am. Chem. Soc. 2001, 123,
7626-7629. (i) Nath, N.; Chilkoti, A. J. Am. Chem. Soc. 2001, 123, 8197-
8202.
We have shown that carboxylate-functionalized nanoparticle
clusters bind ChT and inhibit its activity through complementary
electrostatic interaction.17 In further studies, it has been revealed
that tetra(ethylene glycol) tethers in the nanoparticles minimize
(19) Witt, D.; Klajn, R.; Barski, P.; Grzybowski, B. A. Curr. Org. Chem. 2004,
8, 1763-1797.
(20) (a) Pengo, P.; Polizzi, S.; Pasquato, L.; Scrimin, P. J. Am. Chem. Soc. 2005,
127, 1616-1617. (b) Pengo, P.; Broxterman, Q. B.; Kaptein, B.; Pasquato,
L.; Scrimin, P. Langmuir 2003, 19, 2521-2524. (c) Templeton, A. C.;
Hostetler, M. J.; Warmoth, E. K.; Chen, S.; Hartshorn, C. M.; Krishna-
murthy, V. M.; Forbes, M. D. E.; Murray, R. W. J. Am. Chem. Soc.
1998, 120, 4845-4849. (d) Schaaff, T. G.; Knight, G.; Shafigullin, M.
N.; Borkman, R. F.; Whetten, R. L. J. Phys. Chem. B 1998, 102,
10643-10646. (e) Roberts, C.; Chen, C. S.; Mrksich, M.; Martichonok,
V.; Ingber, D. E.; Whitesides, G. M. J. Am. Chem. Soc. 1998, 120, 6548-
6555.
(17) (a) Hong, R.; Emrick, T.; Rotello, V. M. J. Am. Chem. Soc. 2004, 126,
13572-12573. (b) Hong, R.; Fischer, N. O.; Verma, A.; Goodman, C. M.;
Emrick, T.; Rotello, V. M. J. Am. Chem. Soc. 2004, 126, 739-743. (c)
Fischer, N. O.; Verma, A.; Goodman, C. M.; Simard, J. M.; Rotello, V.
M. J. Am. Chem. Soc. 2003, 125, 13387-13391. (d) Fischer, N. O.;
McIntosh, C. M.; Simard, J. M.; Rotello, V. M. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 5018-5023.
(18) Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis. Construction of
Chiral Molecules Using Amino Acids; Wiley: New York, 1987.
(21) Nissink, J. W. M.; Maas, J. H. Appl. Spectrosc. 1999, 53, 33-39.
9
12874 J. AM. CHEM. SOC. VOL. 127, NO. 37, 2005