Malarial Plasmepsin Inhibitors
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 19 6105
(14) Wyatt David, M.; Berry, C. Activity and inhibition of plasmepsin
site. The 1SME, 1LF2 and 1LF3 X-ray structures were used
as models of Plm II and were initially processed with the
standard Autodock procedure. In a final step the hydrogen
used in our simulations on Asp214 was added manually and
the partial charges of Asp214 were modified to the protonated
Asp residue in the AMBER95 force field.67 The ligand was
assigned Gasteiger charges as implemented in Autodock. The
rigid root was picked automatically and all amide bonds were
kept rigid through the conformational search. One hundred
fifty separate runs were made in each protein model, and the
results were clustered with an RMSD of 2.5 Å.
Additional dockings were made where the Cꢀ of Met75 in
1SME and 1LF3 moved by a 180° rotation around the Câ-
Cγ-Sδ-Cꢀ torsion, thereby enlarging the S2′ pocket. In the
1LF2 model of PlmII the S2′ is already in the open conforma-
tion, and hence no rotation was made there.
IV,
a new aspartic proteinase from the malaria parasite,
Plasmodium falciparum. FEBS Lett. 2002, 513, 159-162.
(15) Bjelic, S.; Aaqvist, J. Computational Prediction of Structure,
Substrate Binding Mode, Mechanism, and Rate for a Malaria
Protease with a Novel Type of Active Site. Biochemistry 2004,
43, 14521-14528.
(16) Nezami, A.; Freire, E. The Integration of Genomic and Structural
Information in the Development of High Affinity Plasmepsin
Inhibitors. Int. J. Parasitol. 2002, 32, 1669-1676.
(17) Goldberg, D. E.; Slater, A. F. G.; Beavis, R.; Chait, B.; Cerami,
A.; Henderson, G. B. Hemoglobin Degradation in the Human
Malaria Pathogen Plasmodium falciparum: A Catabolic Path-
way Initiated by a Specific Aspartic Protease. J. Exp. Med. 1991,
173, 961-969.
(18) Gluzman, I. Y.; Francis, S. E.; Oksman, A.; Smith, C. E.; Duffin,
K. L.; Goldberg, D. E. Order and Specificity of the Plasmodium
falciparum Hemoglobin Degradation Pathway. J. Clin. Invest.
1994, 93, 1602-1608.
(19) Silva, A. M.; Lee, A. Y.; Gulnik, S. V.; Majer, P.; Collins, J.; Bhat,
T. N.; Collins, P. J.; Cachau, R. E.; Luker, K. E.; Gluzman, I. Y.;
Francis, S. E.; Oksman, A.; Goldberg, D. E.; Erickson, J. W.
Structure and Inhibition of Plasmepsin II, a Hemoglobin-
Degrading Enzyme from Plasmodium falciparum. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 10034-10039.
Acknowledgment. We thank the Swedish Founda-
tion for Strategic Research (SSF) and the Swedish
Research Council (VR) for financial support. We also
thank Biotage for providing a Smith Synthesizer.
(20) Moon, R. P.; Tyas, L.; Certa, U.; Rupp, K.; Bur, D.; Jacquet, C.;
Matile, H.; Loetscher, H.; Grueninger-Leitch, F.; Kay, J.; Dunn,
B. M.; Berry, C.; Ridley, R. G. Expression and Characterization
of Plasmepsin I from Plasmodium falciparum. Eur. J. Biochem.
1997, 244, 552-560.
(21) Haque, T. S.; Skillman, A. G.; Lee, C. E.; Habashita, H.;
Gluzman, I. Y.; Ewing, T. J. A.; Goldberg, D. E.; Kuntz, I. D.;
Ellman, J. A. Potent, Low-Molecular-Weight Non-Peptide In-
hibitors of Malarial Aspartyl Protease Plasmepsin II. J. Med.
Chem. 1999, 42, 1428-1440.
(22) No¨teberg, D.; Hamelink, E.; Hulte´n, J.; Wahlgren, M.; Vrang,
L.; Samuelsson, B.; Hallberg, A. Design and Synthesis of
Plasmepsin I and Plasmepsin II Inhibitors with Activity in
Plasmodium falciparum-Infected Cultured Human Erythrocytes.
J. Med. Chem. 2003, 46, 734-746.
(23) Dahlgren, A.; Kvarnstrom, I.; Vrang, L.; Hamelink, E.; Hallberg,
A.; Rosenquist, A.; Samuelsson, B. New Inhibitors of the Malaria
Aspartyl Proteases Plasmepsin I and II. Bioorg. Med. Chem.
2003, 11, 3423-3437.
(24) Oscarsson, K.; Oscarson, S.; Vrang, L.; Hamelink, E.; Hallberg,
A.; Samuelsson, B. New Potent C2-Symmetric Malaria Plas-
mepsin I and II Inhibitors. Bioorg. Med. Chem. 2003, 11, 1235-
1246.
(25) No¨teberg, D.; Schaal, W.; Hamelink, E.; Vrang, L.; Larhed, M.
High-speed Optimization of Inhibitors of the Malarial Proteases
Plasmepsin I and II. J. Comb. Chem. 2003, 5, 456-464.
(26) Ersmark, K.; Feierberg, I.; Bjelic, S.; Hamelink, E.; Hackett, F.;
Blackman, M. J.; Hulten, J.; Samuelsson, B.; Åqvist, J.; Hallberg,
A. Potent Inhibitors of the Plasmodium falciparum Enzymes
Plasmepsin I and II Devoid of Cathepsin D Inhibitory Activity.
J. Med. Chem. 2004, 47, 110-122.
(27) Ersmark, K.; Feierberg, I.; Bjelic, S.; Hulte´n, J.; Samuelsson,
B.; Åqvist, J.; Hallberg, A. C2-Symmetric Inhibitors of Plasmo-
dium falciparum Plasmepsin II: Synthesis and Theoretical
Predictions. Bioorg. Med. Chem. 2003, 11, 3723-3733.
(28) Carroll, C. D.; Patel, H.; Johnson, T. O.; Guo, T.; Orlowski, M.;
He, Z.-M.; Cavallaro, C. L.; Guo, J.; Oksman, A.; Gluzman, I.
Y.; Connelly, J.; Chelsky, D.; Goldberg, D. E.; Dolle, R. E.
Identification of Potent Inhibitors of Plasmodium falciparum
Plasmepsin II from an Encoded Statine Combinatorial Library.
Bioorg. Med. Chem. Lett. 1998, 8, 2315-2320.
(29) Carroll, C. D.; Johnson, T. O.; Tao, S.; Lauri, G.; Orlowski, M.;
Gluzman, I. Y.; Goldberg, D. E.; Dolle, R. E. Evaluation of a
Structure-Based Statine Cyclic Diamino Amide Encoded Com-
binatorial Library Against Plasmepsin II and Cathepsin D.
Bioorg. Med. Chem. Lett. 1998, 8, 3203-3206.
Supporting Information Available: 1H and 13C NMR
spectra of the compounds 3-25 and 28-30. This information
is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Breman, J. The Ears of the Hippopotamus: Manifestations,
Determinants, and Estimates of the Malaria Burden. Am. J.
Trop. Med. Hyg. 2001, 64 (1, 2)S, 1-11.
(2) Wongsrichanalai, C.; Pickard, A. L.; Wernsdorfer, W. H.; Mesh-
nick, S. R. Epidemiology of Drug-Resistant Malaria. Lancet
Infect. Dis. 2002, 2, 209-218.
(3) Gardner, M. J.; Hall, N.; Fung, E.; White, O.; Berriman, M.;
Hyman, R. W.; Carlton, J. M.; Pain, A.; Nelson, K. E.; Bowman,
S.; Paulsen, I. T.; James, K.; Eisen, J. A.; Rutherford, K.;
Salzberg, S. L.; Craig, A.; Kyes, S.; Chan, M.-S.; Nene, V.;
Shallom, S. J.; Suh, B.; Peterson, J.; Angiuoli, S.; Pertea, M.;
Allen, J.; Selengut, J.; Haft, D.; Mather, M. W.; Vaidya, A. B.;
Martin, D. M. A.; Fairlamb, A. H.; Fraunholz, M. J.; Roos, D.
S.; Ralph, S. A.; McFadden, G. I.; Cummings, L. M.; Subrama-
nian, G. M.; Mungall, C.; Venter, J. C.; Carucci, D. J.; Hoffman,
S. L.; Newbold, C.; Davis, R. W.; Fraser, C. M.; Barrell, B.
Genome Sequence of the Human Malaria Parasite Plasmodium
falciparum. Nature (London) 2002, 419, 498-511.
(4) Banerjee, R.; Liu, J.; Beatty, W.; Pelosof, L.; Klemba, M.;
Goldberg, D. E. Four Plasmepsins are Active in the Plasmodium
falciparum Food Vacuole, Including a Protease with an Active-
Site Histidine. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 990-995.
(5) Rosenthal, P. J. Plasmodium falciparum: Effects of Proteinase
Inhibitors on Globin Hydrolysis by Cultured Malaria Parasites.
Exp. Parasitol. 1995, 80, 272-281.
(6) Olson, J. E.; Lee, G. K.; Semenov, A.; Rosenthal, P. J. Antima-
larial Effects in Mice of Orally Administered Peptidyl Cysteine
Protease Inhibitors. Bioorg. Med. Chem. Lett. 1999, 7, 633-638.
(7) Boss, C.; Richard-Bildstein, S.; Weller, T.; Fischli, W.; Meyer,
S.; Binkert, C. Inhibitors of the Plasmodium falciparum Parasite
Aspartic Protease Plasmepsin II as Potential Antimalarial
Agents. Curr. Med. Chem. 2003, 10, 883-907.
(8) Salas, F.; Fichmann, J.; Lee, G. K.; Scott, M. D.; Rosenthal, P.
J. Functional Expression of Falcipain, a Plasmodium falciparum
Cysteine Proteinase, Supports its Role as a Malarial Hemo-
globinase. Infect. Immun. 1995, 63, 2120-2125.
(9) Shenai, B. R.; Sijwali, P. S.; Singh, A.; Rosenthal, P. J.
Characterization of Native and Recombinant Falcipain-2, a
Principal Trophozoite Cysteine Protease and Essential Hemo-
globinase of Plasmodium falciparum. J. Biol. Chem. 2000, 275,
29000-29010.
(10) Sijwali, P. S.; Shenai, B. R.; Gut, J.; Singh, A.; Rosenthal, P. J.
Expression and characterization of the Plasmodium falciparum
hemoglobinase falcipain-3. Biochem. J. 2001, 360, 481-489.
(11) Eggleson, K. K.; Duffin, K. L.; Goldberg, D. E. Identification and
Characterization of Falcilysin, a Metallopeptidase Involved in
Hemoglobin Catabolism within the Malaria Parasite Plasmo-
dium falciparum. J. Biol. Chem. 1999, 274, 32411-32417.
(12) Nezami, A.; Kimura, T.; Hidaka, K.; Kiso, A.; Liu, J.; Kiso, Y.;
Goldberg, D. E.; Freire, E. High-Affinity Inhibition of a Family
of Plasmodium falciparum Proteases by a Designed Adaptive
Inhibitor. Biochemistry 2003, 42, 8459-8464.
(30) Dolle, R. E.; Guo, J.; O’Brien, L.; Jin, Y.; Piznik, M.; Bowman,
K. J.; Li, W.; Egan, W. J.; Cavallaro, C. L.; Roughton, A. L.; Zhao,
W.; Reader, J. C.; Orlowski, M.; Jacob-Samuel, B.; DiIanni
Carroll, C. A Statistical-Based Approach to Assessing the
Fidelity of Combinatorial Libraries Encoded with Electrophoric
Molecular Tags. Development and Application of Tag Decode-
Assisted Single Bead LC/MS Analysis. J. Comb. Chem. 2000, 2,
716-731.
(31) Jiang, S.; Prigge, S. T.; Wei, L.; Gao, Y.-E.; Hudson, T. H.;
Gerena, L.; Dame, J. B.; Kyle, D. E. New Class of Small
Nonpeptidyl Compounds Blocks Plasmodium falciparum Devel-
opment In Vitro by Inhibiting Plasmepsins. Antimicrob. Agents
Chemother. 2001, 45, 2577-2584.
(32) Nezami, A.; Luque, I.; Kimura, T.; Kiso, Y.; Freire, E. Identifica-
tion and Characterization of Allophenylnorstatine-Based Inhibi-
tors of Plasmepsin II, an Antimalarial Target. Biochemistry
2002, 41, 2273-2280.
(13) Dame, J. B.; Yowell, C. A.; Omara-Opyene, L.; Carlton, J. M.;
Cooper, R. A.; Li, T. Plasmepsin 4, the Food Vacuole Aspartic
Proteinase Found in all Plasmodium Spp. Infecting Man. Mol.
Biochem. Parasitol. 2003, 130, 1-12.