V.V. Bashilov et al. / Journal of Organometallic Chemistry 690 (2005) 4330–4336
4335
Found (%): C 79.95; H 2.72; S 4.08. C96H32P2PdS2 Æ
Acknowledgements
C4H10O calc. (%): C 80.51; H 2.84; S 4.30%. 31P–{1H}
1
NMR (ODCB-C6D6, d, ppm): singlet, 22.86. H NMR
This work had been supported by grants from Rus-
sian Foundation for Basic Research (RFBR), project
03-03-32695, Ministry of Science and Technology RF,
Chemistry Division of Russian Academy of Sciences,
and Leading Scientific Schools of the President of the
Russian Federation SS-1060.2003.03.
(ODCB-C6D6, d, ppm): singlet, 1.995 (6H, 2CH3); sin-
glet, 2.038 (6H, 2CH3).
3.2. Preparation of (g2-C70)Pd[(–)tetraMe-BITIOP]
(6)
A mixture of C70 (92.4 mg, 1.1·10ꢀ4 mol), Pd2
(dba)3 ÆC6H6 (50 mg, 5·10ꢀ5 mol), and tetraMe-BI-
TIOP (61 mg, 1.03·10ꢀ4 mol) was stirred in benzene
(7 ml of C6H6 and 0.56 ml of C6D6) at room tempera-
ture with monitoring by 31P NMP spectroscopy. After
12 h only non-complexed starting diphosphine 3, d(P)
21.11 ppm, could be revealed in solution. The product
precipitated was filtered off, washed with diethyl ether,
pentane and dried in vacuo to afford quantitative yield
(154 mg) of complex 6 as dark-brown small crystals.
Found (%): C 82.62; H 2.10; P 3.56. C106H32P2PdS2 calc.
(%): C 82.78; H 2.10; P 4.03. 31P–1H NMR (ODCB-
C6D6, d, ppm): AB-system, d(PA) = 23.57, d(PB) =
23.18, J(PA,PB) = 23.2 Hz.
References
[1] (a) P.J. Fagan, J.C. Calabrese, B. Malone, Science 252 (1991)
1160;
(b) P.J. Fagan, J.C. Calabrese, B. Malone, Acc. Chem. Res. 25
(1992) 134;
(c) V.V. Bashilov, P.V. Petrovskii, V.I. Sokolov, S.V. Lind-
eman, I.A. Guzey, Yu.T. Struchkov, Organometallics 12 (1993)
991.
[2] P.J. Fagan, J.C. Calabrese, B. Malone, J. Am. Chem. Soc. 113
(1991) 9408.
[3] A.L Balch, M.M. Olmstead, Chem. Rev. 98 (1998) 2123.
[4] V.V. Bashilov, B.L. Tumanskii, P.V. Petrovskii, V.I. Sokolov,
Izv. AN, Ser. Khim. (1994) 1131 [Russ. Chem. Bull., 43 (1994)
1069 (Engl. Transl)].
[5] V.V. Bashilov, B.L. Tumanskii, P.V. Petrovskii, V.I. Sokolov,
Izv. AN, Ser. Khim. (1999) 575 [Russ. Chem. Bull., 48 (1999) 570
(Engl. Trans.)].
3.3. X-ray study of 5
[6] V.V. Bashilov, P.V. Petrovskii, V.I. Sokolov, Izv. AN, Ser.
Khim. (1993) 428 [Russ. Chem. Bull., 42 (1993) 392 (Engl.
Transl.)].
[7] T.V. Magdesieva, V.V. Bashilov, D.N. Kravchuk, P.V. Petrovskii,
V.I. Sokolov, K.P. Butin, in: K.M. Kadish, R.S. Ruoff (Eds.),
Recent Advances in the Chemistry and Physics of Fullerenes and
Related Materials, vol. 4, The Electrochemical Society, Inc.,
Pennington, NJ, 1997, p. 209.
[8] V.V. Bashilov, T.V. Magdesieva, D.N. Kravchuk, P.V. Petrovskii,
A.G. Ginzburg, K.P. Butin, V.I. Sokolov, J. Organomet. Chem.
599 (2000) 37, and references therein.
[9] E.M. Sulꢀman, V.G. Matveeva, V.V. Bashilov, V.I. Sokolov,
Kinetika i kataliz 38 (1997) 274 (in Russian).
[10] E. Sulꢀman, V. Matveeva, N. Semagina, I. Yanov, V. Bashilov,
V. Sokolov, J. Mol. Catal. A: Chem. 146 (1999) 257.
[11] V.V. Bashilov, P.V. Petrovskii, V.I. Sokolov, F.M. Dolgu-
shin, A.I. Yanovskii, Yu.T. Struchkov, Izv. AN, Ser. Khim.
(1996) 1268 [Russ. Chem. Bull., 45 (1996) 1207 (Engl.
Transl.)].
[12] V.I. Sokolov, V.V. Bashilov, Platinum Met. Rev. 42 (1998)
18.
[13] (a) V.V. Bashilov, P.V. Petrovskii, B.L. Tumanskii, V.I. Sokolov,
in: Fifth Biennial International Workshop, IWFACꢀ 2001, St.
Petersburg, Russia, Abstracts, 2001, p. P124;
(b) V.I. Sokolov, M.N. Nefedova, T.V. Potolokova, V.V. Bashi-
lov, Pure Appl. Chem. 73 (2001) 275.
[14] V.I. Sokolov, Russ. J. Org. Chem. 35 (1999) 1257.
[15] L.C. Song, P.C. Liu, J.T. Liu, F.H. Su, G.F. Wang, Q.M. Hu,
P. Zanello, F. Laschi, M. Fontani, Eur. J. Inorg. Chem. (2003)
3201.
[16] H. Zhang, C.F. Zhu, L. Li, W. Zou, Y.Q. Huang, J.X. Gao,
Chin. Chem. Lett. 15 (2004) 1411.
[17] (a) T. Benincori, E. Cesarotti, O. Piccolo, F. Sannicolo, J. Org.
Chem. 65 (2000) 2043;
C96H32P2S2PdÆC4H10O (M = 1491.80), orthorhom-
˚
bic, space group P212121, a = 14.5760(9) A, b =
3
˚
˚
˚
17.087(1) A, c = 24.919(2) A, V = 6206.0(7) A , Z = 4,
l = 0.480 mmꢀ1, crystal size 0.40 · 0.20 · 0.05 mm. Sin-
gle-crystal X-ray diffraction experiment was carried out
with a Bruker SMART 1000 CCD area detector, using
graphite
monochromated
˚
Mo
Ka
radiation
(k = 0.71073 A, x-scan with 0.3ꢁ step in x and 20 s
per frame exposure, 2h < 54ꢁ) at 120 K. Reflection inten-
sities were integrated using SAINT software [19] and semi-
empirical method SADABS [20] was applied for absorption
correction (Tmin/Tmax = 0.831/0.976). A total of 42773
reflections were measured, 13595 (Rint = 0.0847) inde-
pendent reflections were used in further calculations
and refinement. The structure was solved by direct
methods and refined by the full-matrix least-squares
against F2 in anisotropic (for non-hydrogen atoms)
approximation. All hydrogen atoms were placed geo-
metrically and included in the structure factor calcula-
tion in the riding motion approximation. Absolute
configuration was determined from the value of Flack
parameter (x = 0.00(3)) [21]. The final refinement was
converged to R1 = 0.0633 (for 9395 observed reflections
with I > 2r(I)) and wR2 = 0.1242 (for all unique reflec-
tions); the number of the refined parameters is 955. All
calculations were performed on an IBM PC/AT using
the SHELXTL software [22]. Crystallographic data for
the structural analysis of 5 has been deposited with the
Cambridge Crystallographic Data Centre, CCDC No.
272221.
(b) P. Antognazza, T. Benincori, S. Mazzoli, F. Sannicolo, G.
Zotti, Sulfur Silicon 146 (1999) 405.