2014
N. D. Ide et al.
LETTER
This report describes the addition of PhSeH to aziridine-
2-carboxylic acid containing peptides, thus expanding the
scope of nucleophiles used for the opening of these elec-
trophilic peptide substrates. The process is capable of pro-
ducing useful phenylselenocysteine derivatives and a-
seleno-b-amino acid-containing peptides. Further studies
aimed at expanding the scope and probing the factors that
influence the regioselectivity of aziridine opening are cur-
rently underway.
References
(1) (a) Marcaurelle, L. A.; Bertozzi, C. R. Chem.–Eur. J. 1999,
5, 1384. (b) Hang, H. C.; Bertozzi, C. R. Acc. Chem. Res.
2001, 34, 727. (c) Zhu, Y.; van der Donk, W. A. Org. Lett.
2001, 3, 1189. (d) Cohen, S. B.; Halcomb, R. L. J. Am.
Chem. Soc. 2002, 124, 2534. (e) Davis, B. G. Chem. Rev.
2002, 102, 579. (f) Galonić, D. P.; van der Donk, W. A.;
Gin, D. Y. Chem.–Eur. J. 2003, 9, 5997. (g) Liu, H.; Wang,
L.; Brock, A.; Wong, C.-H.; Schultz, P. G. J. Am. Chem. Soc.
2003, 125, 1702. (h) Galonić, D. P.; van der Donk, W. A.;
Gin, D. Y. J. Am. Chem. Soc. 2004, 126, 12712. (i) Peri, F.;
Nicotra, F. Chem. Commun. 2004, 623. (j) Zhu, X.;
Schmidt, R. R. Chem.–Eur. J. 2004, 10, 875. (k) Galonić,
D. P.; Ide, N. D.; van der Donk, W. A.; Gin, D. Y. J. Am.
Chem. Soc. 2005, 127, 7359.
Typical PhSeH Conjugation Procedure12
BocAla-b2,3-HAla(a-SePh)GlyPheNHBn
Triethylamine (0.3 mL, 0.002 mmol, 0.1 equiv) was added to a solu-
tion of BocAla-3-MeAzyGlyPheNHBn (13, 10.0 mg, 0.0176 mmol,
1.0 equiv) and PhSeH (3.8 mL, 0.0356 mmol, 2.0 equiv) in DMF
(590 mL) at 23 °C. The resulting yellow solution was stirred for 4 h
at this temperature and then concentrated in vacuo. The resulting
yellow residue was washed with hexanes (3 ꢀ 1.0 mL) and dried in
vacuo to provide BocAla-b2,3-HAla(a-SePh)GlyPheNHBn (11.6
(2) Korn, A.; Rudolph-Böhner, S.; Moroder, L. Tetrahedron
1994, 50, 1717.
(3) (a) Nakajima, K.; Takai, F.; Tanaka, T.; Okawa, K. Bull.
Chem. Soc. Jpn. 1978, 51, 1577. (b) Nakajima, K.; Tanaka,
T.; Morita, K.; Okawa, K. Bull. Chem. Soc. Jpn. 1980, 53,
283. (c) Tanaka, T.; Nakajima, K.; Okawa, K. Bull. Chem.
Soc. Jpn. 1980, 53, 1352. (d) Okawa, K.; Nakajima, K.
Biopolymers 1981, 20, 1811.
(4) Van Leeuwen, S. H.; Quaedflieg, P. J. L. M.; Broxterman, Q.
B.; Liskamp, R. M. J. Tetrahedron Lett. 2002, 43, 9203.
(5) (a) Nakajima, K.; Tanaka, T.; Neya, M.; Okawa, K. Bull.
Chem. Soc. Jpn. 1982, 55, 3237. (b) Okawa, K.; Nakajima,
K.; Tanaka, T.; Neya, M. Bull. Chem. Soc. Jpn. 1982, 55,
174. (c) Kuyl-Yeheskiely, E.; Dreef-Tromp, C. M.; van der
Marel, G. A.; van Boom, J. H. Recl. Trav. Chim. Pays-Bas
1989, 108, 314.
(6) A similar regioselectivity effect was also observed in the
thiolysis of Azy-containing peptides. See ref. 1k.
(7) (a) Tanaka, T.; Nakajima, K.; Okawa, K. Bull. Chem. Soc.
Jpn. 1980, 53, 1352. (b) Cardillo, G.; Gentilucci, L.;
Tolomelli, A. Chem. Commun. 1999, 167. (c) Armaroli, S.;
Cardillo, G.; Gentilucci, L.; Gianotti, M.; Tolomelli, A. Org.
Lett. 2000, 2, 1105.
(8) (a) Hanessian, S.; Yang, H.; Schaum, R. J. Am. Chem. Soc.
1996, 118, 2507. (b) Hanessian, S.; Yang, H. Tetrahedron
Lett. 1997, 38, 3155.
1
mg, 90%) as a white solid; mp 235–237 °C. H NMR (500 MHz,
DMF-d7): d = 8.63 (t, J = 5.9 Hz, 1 H), 8.57 (t, J = 5.7 Hz, 1 H),
8.34 (d, J = 8.2 Hz, 1 H), 8.20 (m, 1 H), 7.80 (m, 2 H), 7.50–7.38
(m, 13 H), 6.82 (d, J = 7.6 Hz, 1 H), 4.86 (m, 1 H), 4.53 (m, 3 H),
4.28 (m, 2 H), 4.12 (dd, J = 16.6, 6.1 Hz, 1 H), 3.80 (dd, J = 16.4,
5.3 Hz, 1 H), 3.36 (dd, J = 13.8, 5.5 Hz, 1 H), 3.12 (m, 1 H), 1.56
(s, 9 H), 1.45 (d, J = 7.1 Hz, 3 H), 1.41 (d, J = 6.6 Hz, 3 H) ppm. 13
C
NMR (125 MHz, DMF-d7): d = 172.8, 171.6, 171.5, 169.6, 156.0,
140.1, 138.7, 134.6, 130.0, 129.9, 129.6, 128.9, 128.8, 128.2, 128.0,
127.4, 127.0, 78.7, 55.4, 52.1, 50.8, 47.1, 43.5, 43.1, 38.6, 28.4,
19.0, 18.9 ppm. FT-IR (neat film): 3289, 1654, 1524, 1374, 1245,
1165, 1025, 871 cm–1. HRMS (ESI)+: m/z calcd for C36H46N5O6Se
[M + H]+: 724.2613; found: 724.2609.
Note: Products of PhSeH selenolysis of compounds 10, 12, and 13
were purified in this fashion (hexane wash). Products of PhSeH se-
lenolysis of compounds 5, 6, 8, and 11 were purified by column
chromatography.
Acknowledgment
(9) The seleno-peptide conjugates 18 and 21 were directly
isolated following cleavage from the resin, and were
assessed to be >90% pure by 1H NMR.
This research was supported by the NIH (GM58833). Procter and
Gamble fellowships to D.P.G. and N.D.I. are acknowledged.
(10) (a) Okeley, N. M.; Zhu, Y.; van der Donk, W. A. Org. Lett.
2000, 2, 3603. (b) Gieselman, M. D.; Zhu, Y.; Zhou, H.;
Galonić, D.; van der Donk, W. A. ChemBioChem 2002, 3,
709. (c) Zhu, Y.; Gieselman, M. D.; Zhou, H.; Averin, O.;
van der Donk, W. A. Org. Biomol. Chem. 2003, 1, 3304.
(d) Paul, M.; van der Donk, W. A. Mini-Reviews in Org.
Chem. 2005, 2, 343.
(11) Although solid-phase synthesis of Azy(3-Me)-containing
peptides is a highly efficient process, attempts at on-bead
selenolysis were not efficient due to competitive
unproductive processes such as, inter alia, aziridine N-
deacylation.
(12) For detailed representative procedures on the solution-phase
and solid-phase synthesis of aziridine-containing peptides,
see ref. 1k.
Synlett 2005, No. 13, 2011–2014 © Thieme Stuttgart · New York