K. Fujiwara et al. / Tetrahedron Letters 46 (2005) 6819–6822
6821
1999, 1, 2029; (m) Kadota, I.; Uyehara, H.; Yamamoto,
Y. Tetrahedron 2004, 60, 7361; (n) Baek, S.; Jo, H.;
Kim, H.; Kim, H.; Kim, S.; Kim, D. Org. Lett. 2005, 7,
75.
Agriculture, Hokkaido University) for the measure-
ments of mass spectra. This work was supported by a
Grant-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science, and Technology
of Japanese Government.
10. For the syntheses of prelaureatin and laurallene, see: (a)
Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000,
122, 5473; (b) Fujiwara, K.; Souma, S.; Mishima, H.;
Murai, A. Synlett 2002, 1493; (c) Saitoh, T.; Suzuki, T.;
Sugimoto, M.; Hagiwara, H.; Hoshi, T. Tetrahedron Lett.
2003, 44, 3175; See, also: (d) Edwards, S. D.; Lewis, T.;
Taylor, R. J. K. Tetrahedron Lett. 1999, 4267.
11. Stereoselective syntheses of 2,8-cis and 2,8-trans eight-
membered cyclic ethers: (a) Kotsuki, H.; Ushio, Y.;
Kadota, I.; Ochi, M. J. Org. Chem. 1989, 54, 5153; (b)
Hoffmann, H. M. R.; Brandes, A. Tetrahedron 1995, 51,
155.
12. Here, CuI was employed instead of CuBr, used in the
original procedure. Original reports: (a) Kotsuki, H.;
Kadota, I.; Ochi, M. Tetrahedron Lett. 1989, 30, 1281; (b)
Kotsuki, H.; Kadota, I.; Ochi, M. Tetrahedron Lett. 1989,
30, 3999.
References and notes
1. The lauthisan compounds have a common cis-2-ethyl-8-
hexyloxocane skeleton: (a) Blunt, J. W.; Lake, R. J.;
Munro, M. H. G.; Yorke, S. C. Aust. J. Chem. 1981, 34,
2393; (b) Blunt, J. W.; Lake, R. J.; Munro, M. Aust. J.
Chem. 1984, 37, 1545.
2. The trivial name laurenan describes the basic skeleton of
laurenyne. See: (a) Carling, R. W.; Clark, S. J.; Holmes, A.
B. J. Chem. Soc., Chem. Commun. 1986, 565. Although the
original laurenan was designated for cis-2-pentyl-8-prop-
yloxocane by Holmes, the name was also used for
describing prelaureatin-type compounds that have a com-
mon trans-2-pentyl-8-propyloxocane skeleton by Murai.
See: (b) Ishihara, J.; Kanoh, N.; Fukuzawa, A.; Murai, A.
Chem. Lett. 1994, 1563. For clarity, ꢁtrans-laurenanꢀ is
adopted here to explain the prelaureatin skeleton.
3. (a) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett.
1965, 1091; (b) Irie, T.; Suzuki, M.; Masamune, T.
Tetrahedron 1968, 24, 4193; (c) Cameron, A. F.; Cheung,
K. K.; Ferguson, G.; Robertson, J. M. J. Chem. Soc. B
1969, 559; (d) Cameron, A. F.; Cheung, K. K.; Ferguson,
G.; Robertson, J. M. J. Chem. Soc., Chem. Commun. 1965,
638.
4. (a) Fukuzawa, A.; Takasugi, Y.; Murai, A. Tetrahedron
Lett. 1991, 32, 5597; (b) Fukuzawa, A.; Takasugi, Y.;
Murai, A.; Nakamura, M.; Tamura, M. Tetrahedron Lett.
1992, 33, 2017.
5. For a review: Erickson, K. L. In Marine Natural Products,
Chemical and Biological Perspectives; Scheuer, P. J., Ed.;
Academic Press: New York, 1983; Vol. 5, p 131.
13. Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem.
1978, 43, 2048.
14. The C4-diastereomers of 5 could be separated facilely by
flash silica gel column chromatography (hexane/
AcOEt = 12:7), and no C3-epimers were observed. 1H
NMR data of the less polar C4-diastereomer of 5:
(300 MHz, CDCl3) d 0.94 (3H, t, J = 7.3 Hz), 1.35 (3H,
s), 1.39–1.63 (2H, m), 1.42 (3H, s), 2.04–2.37 (4H, m), 2.26
(1H, d, J = 3.7 Hz), 3.44 (1H, br-ddd, J = 3.3, 4.0,
8.1 Hz), 3.56 (1H, ddd, J = 3.3, 6.6, 8.8 Hz), 3.72–3.79
(1H, m), 3.77 (1H, dd, J = 6.6, 8.3 Hz), 3.99 (1H, dd,
J = 6.6, 8.3 Hz), 4.12 (1H, q, J = 6.6 Hz), 5.07–5.20 (4H,
m), 5.77–5.95 (2H, m); 1H NMR data of the polar C4-
diastereomer of 5: (300 MHz, CDCl3) d 0.92 (3H, t,
J = 7.4 Hz), 1.35 (3H, s), 1.38–1.73 (2H, m), 1.42 (3H, s),
2.13–2.41 (4H, m), 2.48 (1H, d, J = 4.6 Hz), 3.38 (1H, q,
J = 5.4 Hz), 3.54–3.66 (2H, m), 3.75 (1H, dd, J = 6.6,
8.3 Hz), 3.99 (1H, dd, J = 6.6, 8.3 Hz), 4.12 (1H, q,
J = 6.6 Hz), 5.01–5.12 (4H, m), 5.81–5.95 (2H, m). For
convenience, the diene 5 was used without diastereomer
separation for the next RCM step, where the product 14
also displayed a 1:1 diastereomer ratio. From the fact that
oxidation of 14 gave 15 as a single product, no epimer-
ization at C3 during the transformation from 12 to 15 was
confirmed.
6. For reviews: (a) Murai, A. In Comprehensive Natural
Products Chemistry; Barton, D., Nakanishi, K., Meth-
Cohn, O., Eds.; Elsevier: Amsterdam, 1999; Vol. 1, p 303;
(b) Ishihara, J.; Murai, A. J. Synth. Org. Chem. Jpn. 2001,
59, 1181; Oka, T.; Murai, A. Chem. Lett. 1994, 1611.
7. Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH:
Weinhem, 2003.
15. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953.
8. Related work, see: Fujiwara, K.; Koyama, Y.; Doi, E.;
Shimawaki, K.; Ohtaniuchi, Y.; Takemura, A.; Souma, S.;
Murai, A. Synlett 2002, 1496, See, also Ref. 9h and 9i.
9. For the synthesis of laurencin, see: (a) Murai, A.; Murase,
H.; Matsue, H.; Masamune, H. Tetrahedron Lett. 1977,
2507; (b) Masamune, T.; Matsue, H.; Murase, H. Bull.
Chem. Soc. Jpn. 1979, 52, 127–134; (c) Masamune, T.;
Murase, H.; Matsue, H.; Murai, A. Bull. Chem. Soc. Jpn.
1979, 52, 135–141; (d) Tsushima, K.; Murai, A. Tetra-
hedron Lett. 1992, 33, 4345; (e) Brats, M.; Bullock, W. H.;
Overman, L. E.; Takemoto, T. J. Am. Chem. Soc. 1995,
117, 5958; (f) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork,
T. C.; Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc.
16. In the reaction, 4-epi-16 was afforded in 5% yield (16: 4-
epi-16 = 18:1). When L-SelectrideÒ was used in the
reduction of 15, the stereoselectivity was moderate
(4.4:1). The stereoselectivity tended to increase with
increasing bulkiness of the reductant. The details will be
disclosed elsewhere in the future.
17. Calzada, J. G.; Hooz, J. Org. Synth. Coll. 1988, 6, 634, and
the references cited therein.
18. Ethanedithiol–Zn(OTf)2 for removal of an acetal protec-
tive group: (a) Takemura, A.; Fujiwara, K.; Shimawaki,
K.; Murai, A.; Kawai, H.; Suzuki, T. Tetrahedron 2005,
61, 7392; See, also: (b) Nocolaou, K. C.; Veale, C. A.;
Hwang, C.-K.; Hutchinson, J.; Prasad, C. V. C.; Ogilvie,
W. W. Angew. Chem., Int. Ed. Engl. 1991, 30, 299.
19. (a) Burke, S. D.; Piscopio, A. D.; Kort, M. E.; Matulenko,
M. A.; Parker, M. H.; Armistead, D. M.; Shankaran, K. J.
Org. Chem. 1994, 59, 332; (b) Wender, P. A.; Sieburth, S.
M.; Petraitis, J. J.; Singh, S. K. Tetrahedron 1981, 37,
3967.
1997, 119, 7483; (g) Kruger, J.; Hoffmann, R. W. J. Am.
¨
Chem. Soc. 1997, 119, 7499; (h) Mujica, M. T.; Afonso, M.
M.; Galindo, A.; Palenzuela, J. A. Synlett 1996, 983; (i)
Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J.
A. J. Org. Chem. 1998, 63, 9728; (j) Suzuki, T.; Matsu-
mura, R.; Nagai, K.; Sato, H.; Sekiguchi, H.; Hagiwara,
H.; Ando, M. Symposium papers, 39th Symposium on
the Chemistry of Natural Products, Sapporo; 1997; pp 97.
(k) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999,
121, 5653; (l) Crimmins, M. T.; Emmitte, K. A. Org. Lett.
20. The combination of Et2OÆBF3 and an organolithium
reagent for epoxide ring-opening, see: (a) Eis, M. J.;