Notes and references
{ Experimental
Isolation of 1Sb/4Sb: DmpNH2 (2.40 mL, 19.5 mmol) added to SbCl3
(1.78 g, 7.81 mmol) in toluene, filtered and removal of solvent under
reduced pressure gave a precipitate that was dissolved in minimal CH2Cl2
and vapour diffusion of pentane over 2 days gave crystals (1.23 g) of
empirical formula (DmpNH2)3Sb2Cl6?0.5CH2Cl2: mp 81–82 uC; Anal.
Calcd. for C24H33N3Cl6Sb2 (Found): C 35.16 (33.01), H 4.06 (4.04), N 5.13
(5.97); IR (order of intensities): 280(1), 326(5), 436(9), 494(14), 543(11),
670(13), 770(2), 769(3), 928(11), 1027(15), 1098(12), 1139(19), 1154(20),
1211(6), 1262(7), 1577(10), 1598(8), 3295(17), 3357(16), 3374(18); NMR: 1H
(CDCl3): 2.18 (s), 3.86 (s), 6.69 (t), 6.94 (d); Crystal Data:
˚
C
24.5H34Cl7N3Sb2, M 5 862.20 g mol21, triclinic, P-1, a 5 9.9556(7) A,
˚
˚
b 5 10.4211(7) A, c 5 16.9114(12) A, a 5 85.8918(10)u, b 5 84.9494(10)u,
3
˚
c 5 73.7057(9)u, V 5 1675.5(2) A , T 5 193(2) K, Z 5 2, m(MoKa)
˚
0.71073 (A), Reflections; 6811 unique, 6180 observed, R (for 6180
reflections with (I . 2s(I))) 5 0.0220; wR(all) 5 0.0600.
Fig. 1 Solid state molecular structure of 6Sb. Ellipsoids drawn at 50%
probability and hydrogen atoms omitted for clarity. Selected bond
˚
lengths (A): N1–Sb1 2.108(2), N1–Sb2 2.521(2), N2–Sb1 2.023(2), N2–Sb2
Isolation of 6Sb and 8Sb: DmpNH2 (4.94 mL, 39.3 mmol) added to
NEt3 (5.71 mL, 39.6 mmol) and SbCl3 (6.23 g, 27.3 mmol) in toluene
(110 mL) at 0 uC, stirred for 1.5 h at RT. Filtered and the solvent was
removed in vacuo to 5 mL, addition of pentane (5 mL) gave a yellow
precipitate after 4 days at 224 uC, which was dissolved in minimal CH2Cl2
and vapour diffusion of pentane gave a mixture of crystals (0.13 g) with
two distinct morphologies and colours, manually separated. Pale yellow
2.039(2), Sb1–Cl1 2.409(1), Sb2–Cl2 2.425(1), Sb2–Cl3 2.450(1).
(, 0.02 g) 6Sb; Crystal Data: C16H19Cl3N2Sb2, M 5 589.18 g mol21
,
Monoclinic, P21/c, a 5 13.0005(9) A, b 5 20.8528(14) A, c 5 15.5863(10) A,
˚
˚
˚
3
˚
b 5 108.9580(10)u, V 5 3996.2(5) A , T 5 193(2) K, Z 5 8, m(MoKa)
˚
0.71073 (A), Reflections; 8121 unique, 7448 observed, R (for 7448
reflections with (I . 2s(I))) 5 0.0211; wR(all) 5 0.0555. Colourless
(y0.10 g) 8Sb, mp 269–271 uC; Anal. Calcd. for C24H27N3Cl3Sb3 (Found):
C 34.77 (31.52), H 3.28 (3.45), N 5.07 (5.25); IR: 229(5), 325(9), 373(11),
486(15), 522(8), 690(10), 707(7), 790(3), 811(2), 839(4), 901(16), 984(12),
1023(13), 1097(6), 1164(1), 1252(14), 1586(17), 1799(19), 1867(20), 1934(18);
1
NMR: H (CDCl3): 2.60 (s, 3H), 2.66 (s, 6H), 2.69 (s, 3H), 2.74 (s, 6H),
7.02–7.17 (m, 9H); Crystal Data: C24H27Cl3N3Sb3, M 5 829.09 g mol21
,
Monoclinic, P21/c, a 5 16.376(3) A, b 5 8.9041(14) A, c 5 19.122(3) A,
˚
˚
˚
˚
3
b 5 96.817(3)u, V 5 2768.6(7) A , T 5 193(2) K, Z 5 4, m(MoKa)
˚
0.71073 (A), Reflections; 5572 unique, 4468 observed, R (for 4468
reflections with (I . 2s(I))) 5 0.0687; wR(all) 5 0.1960. CCDC 271559–
CIF or other electronic format.
Fig. 2 Solid state molecular structure of one conformer of 8Sb.
Ellipsoids drawn at 50% probability and hydrogen atoms omitted for
˚
clarity. Selected bond lengths (A): Sb–N 2.012(8)–2.071(8), Sb–Cl
1 I. Manners, Angew. Chem., Int. Ed., 1996, 35, 1602–1621.
2 R. Keat, Top. Curr. Chem., 1982, 102, 89–116.
3 H.-J. Chen, R. C. Haltiwanger, T. G. Hill, M. L. Thompson,
D. E. Coons and A. D. Norman, Inorg. Chem., 1985, 24, 4725–4730.
4 L. Stahl, Coord. Chem. Rev., 2000, 210, 203–250.
5 R. A. Shaw, Phosphorus, Sulfur Silicon Relat. Elem., 1978, 4, 101–121.
6 N. Burford, T. S. Cameron, K. D. Conroy, B. Ellis, C. L. B. Macdonald,
R. Ovans, A. D. Phillips, P. J. Ragogna and D. Walsh, Can. J. Chem.,
2002, 80, 1404–1409.
2.364(7)–2.403(3).
observations for both the phosphorus 8P27 and arsenic 8As
analogues.28 Restricted rotation of the Dmp substituents of 8Sb at
room temperature is responsible for a 1 : 2 : 1 : 2 1H NMR signal
pattern observed for the ortho-methyl groups.
Compounds 1Sb and 4Sb represent kinetically stable adducts of
the primary amine with SbCl3. The introduction of NEt3, as a
stronger Brønsted base than DmpNH2, effects deprotonation of
the adduct securing the N–Sb bond in 2Sb. Repetition of this
process may effect sequential association of a second amine and a
second unit of SbCl3 (via 3Sb or 5Sb) to give 6Sb. Alternatively,
dehydrochloride coupling of two molecules of 2Sb provides access
to 6Sb. Irrespective of these possible mechanisms, the isolation of
6Sb implies a unique kinetic stabilization with respect to the
cyclodipnictadiazane framework 7Sb in the context of the acyclic
phosphazanes that have only been devised using skeletal stabiliza-
tion to topologically restrict cyclization.30 The impeded cyclisation
of 6Sb may allow for additional dehydrochloride coupling steps
with a third molecule of 2Sb, or through further sequential
association of an amine and SbCl3 to give 8Sb.
7 M. S. Balakrishna, V. S. Reddy, S. S. Krishnamurthy, J. F. Nixon and
J. C. T. R. Burckett St.Laurent, Coord. Chem. Rev., 1994, 129, 1–90.
8 G. A. Olah and A. A. Oswald, Can. J. Chem., 1960, 38, 1428–1430.
9 D. C. Haagenson, L. Stahl and R. J. Staples, Inorg. Chem., 2001, 40,
4491–4493.
10 R. Bohra, H. W. Roesky, M. Noltemeyer and G. M. Sheldrick, Acta
Crystallogr., Sect. C, 1984, 40, 1150–1152.
11 J.-T. Ahlemann, H. W. Roesky, R. Murugavel, E. Parisini,
M. Noltemeyer, H.-G. Schmidt, O. Mu¨ller, R. Herbst-Irmer,
L. N. Markovskii and Y. G. Shermolovich, Chem. Ber., 1997, 130,
1113–1121.
12 E. V. Avtomonov, K. Megges, X. Li, J. Lorberth, S. Wocadlo,
W. Massa, K. Harms, A. V. Churakov and J. A. K. Howard,
J. Organomet. Chem., 1997, 544, 79–89.
13 C. L. Raston, B. W. Skelton, V.-A. Tolhurst and A. H. White, Dalton
Trans., 2000, 1279–1285.
14 N. Burford, T. S. Cameron, K.-C. Lam, D. J. LeBlanc,
C. L. B. Macdonald, A. D. Phillips, A. L. Rheingold, L. Stark and
D. Walsh, Can. J. Chem., 2001, 79, 342–348.
15 B. Ross, J. Belz and M. Nieger, Chem. Ber., 1990, 123, 975–978.
16 R. Garbe, J. Pebler, K. Dehnicke, D. Fenske, H. Goesmann and
G. Baum, Z. Anorg. Allg. Chem., 1994, 620, 592–598.
We thank the Natural Sciences and Engineering Research
Council of Canada, the Killam Foundation, the Canada Research
Chairs Program, and the Sumner Foundation for funding.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 5074–5076 | 5075