10.1002/anie.202010759
Angewandte Chemie International Edition
COMMUNICATION
and oxidation conditions by using potassium ferricyanide[21] gave
the desired product 23, although the yield was only 6% (entries
3 and 4). Next, an electrochemical condition[22] and the aerobic
oxidation with Grubbs catalyst developed by our group[23] were
examined. In both cases, the starting material 6 was completely
consumed, however, the desired product 23 was not obtained
(entries 5 and 6). Interestingly, acetic acid-promoted aerobic
oxidation of 6 provided 23 in 13% yield (entry 7).[24] Furthermore,
non-heme type iron catalyst, such as Fe(R,R-PDP) and H2O2, as
oxidant was effective to promote the oxidative intramolecular
Mannich reaction to provide aspidosperma skeleton 23 in 22%
yield (entry 8).[25] Interestingly, we observed the match–
mismatch combination between substrate and catalyst. Thus,
Fe(S,S-PDP) improved the yield of 23 up to 38% and
substantially shortened the reaction time (entry 9). The catalyst
loading of Fe(S,S-PDP) could be reduced to 3 mol% by using t-
AmOH as solvent without losing the chemical yield of 23 (entry
10). Use of tert-butyl hydroperoxide (TBHP) instead of H2O2
accelerated the reaction (entry 11). The established optimal
conditions (entry 10) were applicable to a half gram-scale
reaction.[26] Finally, methoxy carbonyl group was introduced via a
metalloenamine as intermediate to afford a sub-gram quantity
(260 mg) of (–)-deoxoapodine (1) (Scheme 3).
JP18H04642 in Hybrid Catalysis, a Grant-in aid for Scientific
Research (B) (18H02549) and (C) (17K08204).
Keywords: total synthesis · alkaloid · haloetherification · C-H
functionalization · oxidation
[1]
For selected examples of total synthesis of aspidosperma alkaloids,
see: a) G. Stork, J. E. Dolfini, J. Am. Chem. Soc. 1963, 85, 2872–2873;
b) J. Harley-Mason, M. A Kaplan, Chem. Commun. 1967, 915–916; c)
J. P. Kutney, N. Abdurahman, C. Gletsos, P. Le Quesne, E. Piers, I.
Vlattas, J. Am. Chem. Soc. 1970, 92, 1727–1735; d) F. E. Ziegler, G.
Bennett, J. Am. Chem. Soc. 1971, 93, 5930–5931; e) Y. Ban, T.
Ohnuma, M. Nagai, Y. Sendo, T. Oishi, Tetrahedron Lett. 1972, 13,
5023-5026; f) T. Gallagher, P. Magnus, J. Huffman, J. Am. Chem. Soc.
1982, 104, 1140–1141; g) M. E. Kuehne, D. E. Podhorez, J. Org. Chem.
1985, 50, 924–929; h) S. A. Kozmin, V. H. A Rawal, J. Am. Chem. Soc.
1998, 120, 13523–13524; i) S. Kobayashi, G. Peng, T. Fukuyama,
Tetrahedron Lett. 1999, 40, 1519–1522; j) G. D. Wilkie, G. I. Elliott, B.
S. J. Blagg, S. E. Wolkenberg, D. R. Soenen, M. M. Miller, S. Pollack,
D. L. Boger, J. Am. Chem. Soc. 2002, 124, 11292–11294; k) I.
Coldham, A. J. M. Burrell, L. E. White, H. Adams, N. Oram, Angew.
Chem., Int. Ed. 2007, 46, 6159–6162; l) S. B. Jones, B. Simmons, A.
Mastracchio, D. W. C. MacMillan, Nature 2011, 475, 183–188; m) L.
McMurray, E. M. Beck, M. J. Gaunt, Angew. Chem. Int. Ed. 2012, 51,
9288–9291; n) S .Zhao, R. B. Andrade, J. Am. Chem. Soc. 2013, 135,
13334–1337; o) O. Wagnières, Z. Xu, Q. Wang, J. Zhu, J. Am. Chem.
Soc. 2014, 136, 15102–15108; p) P. W. Tan, J. Seayad, D. J. Dixon,
Angew. Chem., Int. Ed. 2016, 55, 13436–13440; q) For a selected
review, see: J. M. Saya, E. Ruijter, R. V. A. Orru, Chem. Eur. J. 2019,
25, 8916–8935.
Scheme 3. Total Synthesis of (–)-Deoxoapodine
N
N
sec-BuLi;
H
H
NCCO2Me
10 steps
(8.6%)
O
O
[2]
a) “The Aspidosperma Alkaloids”: G. A. Cordell, in The Alkaloids,
Chemistry and Physiology, Vol. 17 (Eds.: R. H. F. Manske, R. G. A.
Rodrigo,), Academic Press, New York, 1979, pp. 199–384; b) “Alkaloids
of the Aspidospermine Group”: J. E. Saxton, in The Alkaloids,
Chemistry and Biology, Vol. 51 (Ed.: G. A. Cordell,), Academic Press,
San Diego, 1998, pp. 1–197. For selected reviews on synthetic studies,
see: c) “Synthesis of the Aspidosperma Alkaloids”: J. E. Saxton, in The
Alkaloids, Chemistry and Biology, Vol. 50 (Ed.: G. A. Cordell,),
Academic Press, San Diego, 1998, pp. 343–376.
THF
–78 °C to rt
N
N
H
260 mg
CO2Me
(–)-deoxoapodine (1)
23
86%
synthetic 1: [α]D26 = –497 (c = 0.56, CHCl3)
natural 1: [α]D25 = –432 (c = 0.76, CHCl3)Ref. 3
In summary, we accomplished a concise total synthesis of
(–)-deoxoapodine (1) in overall 10 steps[26] and with 8.6% yield.
This successful synthesis relied on the design of a highly
convergent route by utilizing direct formation of C12–C19 bond
and C2–C3 bond based on the development of two C–H
functionalization protocols and the early-stage construction of
the right-hand bicyclic THF-fused piperidine segment by
[3]
[4]
a) R. Inglesias, L. Diatta, Rev. CENIC, Cienc. Fis. 1975, 6, 135; b) A. M.
Bui, B. C. Das, P. Potier, Phytochem. 1980, 19, 1473–1475.
a) R. Goutarel, A. Rassat, M. Plat, J. Poisson, Bull. Soc. Chim. Fr.
1959, 893; b) Y. Rolland, N. Kunesch, J. Poisson, J. Org. Chem. 1976,
41, 3270–3275; c) M. Kitajima, M. Iwai, N. Kogure, R. Kikura-Hanajiri,
Y. Goda, H. Takayama, Tetrahedron 2013, 69, 796–801.
[5]
[6]
K. Lee, D. L. Boger, J. Am. Chem. Soc. 2014, 136, 3312–3317.
T. Kang, K. L. White, T. J. Mann, A. H. Hoveyda, M. Movassaghi,
Angew. Chem., Int. Ed. 2017, 56, 13857–13860.
developing
catalytic
enantioselective
5-endo
bromocycloetherification of non-activated olefin. The convergent
synthetic design based on C–H functionalization was effective to
reduce chemical steps and to eliminate protection/deprotection
sequence. Over the entire synthetic route, we used only one
protecting group. Efficiency and scalability of the synthesis of
monomer unit is expected to expedite the synthetic research on
the series of structurally intriguing dimeric compounds.
[7]
[8]
[9]
Y. G. Zhou, H. N. C. Wong, X. S. Peng, J. Org. Chem. 2020, 85, 967–
976.
L. E. Overman, G. M. Robertson, A. J. Robichaud, J. Am. Chem. Soc.
1991, 113, 2598–2610.
For an example of asymmetric 5-endo iodolactonization (up to 45% ee),
see: a) J. M. Garnier, S. Robin, G. Rousseau, Eur. J. Org. Chem. 2007,
3281–3286; For an example of asymmetric chlorocycloetherification of
homostyryl alcohol in 5-endo mode, see: b) X. Zeng, C. Miao, S. Wang,
C. Xia, W. Sun, Chem. Commun. 2013, 49, 2418–2420; For the first
example of enantioselective 6-endo chlorocycloetherification of non-
activated olefin unlike styrene substrate, see: c) M. L. Landry, G. M.
McKenna, N. Z. Burns, J. Am. Chem. Soc. 2019, 141, 2867–2471.
Acknowledgements
This work was supported by the Drug Discovery and Life
Science Research (BINDS) from AMED under Grant Number
JP19am0101100 and JSPS KAKENHI Grant Numbers
JP18H04379 in Middle Molecular Strategy, JP18H04231 in
Precisely Designed Catalysts with Customized Scaffolding, and
[10] For construction of aspidosperma skeleton by transannular Mannich
reaction via oxidation of C12 position was only limited to Kutney’s
protocol using highly toxic Hg(OAc)2, which resulted in a low yield and
Ziegler’s preliminary experiment (Ref. 1d) using Pt/O2 (yield not
reported). No alternative method has been developed over the half
This article is protected by copyright. All rights reserved.