Chem. Eur. J., 2004, 10, 3144–3157; (e) A. Rajca, K. Shiraishi, M. Vale,
H. Han and S. Rajca, J. Am. Chem. Soc., 2005, 127, 9014–9020.
3 (a) H. Iwamura, K. Inoue and N. Koga, New J. Chem., 1998, 201–210;
(b) M. Tanaka, K. Matsuda, T. Itoh and H. Iwamura, J. Am. Chem.
Soc., 1998, 120, 7168–7173.
4 The effect of organic matrices on exchange coupling: D. A. Shultz,
A. K. Boal and G. T. Farmer, J. Am. Chem. Soc., 1997, 119, 3846–3847.
5 (a) Bioactive Spin Labels, ed. R. I. Zhdanov, Springer-Verlag, Berlin,
1992; (b) W. L. Hubbell, D. S. Cafiso and C. Altenbach, Nature Struct.
Biol., 2000, 7, 735–739; (c) L. J. Berliner, S. S. Eaton and G. R. Eaton,
Distance Measurements in Biological Systems by EPR, in Magnetic
Resonance, Kluwer Academic/Plenum, New York, 2000, vol. 19.
6 (a) C. S. Winalski, S. Shortkroff, R. V. Mulkern, E. Schneider and
G. M. Rosen, Magn. Reson. Med., 2002, 48, 965–972; (b) G. M. Rosen,
E. Schneider, S. Shortkroff, P. Tsai and C. S. Winalski, J. Chem. Soc.,
Perkin Trans 1, 2002, 2663–2667.
7 (a) A. J. Maliakal, N. J. Turro, A. W. Bosman, J. Cornel and
E. W. Meijer, J. Phys. Chem. A, 2003, 107, 8467–8475; (b) G. Francese,
F. A. Dunand, C. Loosli, A. E. Merbach and S. Decurtins, Magn.
Reson. Chem., 2003, 41, 81–83.
Fig. 3 Plots of 1/T1 (for protons of water) vs. mM concentration of
diradical 1 and monoradical 2 in H2O or phosphate buffer (50 mM,
pH 7.2).
8 A. T. Yordanov, K. Yamada, M. C. Krishna, J. B. Mitchell, E. Woller,
M. Cloninger and M. W. Brechbiel, Angew. Chem., Int. Ed., 2001, 40,
2690–2692.
9 (a) L. Marx and A. Rassat, Chem. Commun., 2002, 632–633; (b)
W. Huang, B. Charleux, R. Chiarelli, L. Marx, A. Rassat and
J.-P. Vairon, Macromol. Chem. Phys., 2002, 203, 1715–1723.
10 G. M. Rosen, S. Porasuphatana, P. Tsai, N. P. Ambulos, V. E. Galtsev,
K. Ichikawa and H. J. Halpern, Macromolecules, 2003, 36, 1021–1027.
11 J. B. Livramento, E. Toth, A. Sour, A. Borel, A. E. Merbach and
R. Ruloff, Angew. Chem., Int. Ed., 2005, 44, 1480–1484.
12 Toxicity of aminoxyls: S. Sosnovsky, J. Pharm. Sci., 1992, 81, 496–499.
13 L. Banci, I. Bertini and C. Luchinat, Nuclear and Electron Relaxation,
VCH, Weinheim, 1991.
14 F. Kanno, K. Inoue, N. Koga and H. Iwamura, J. Phys. Chem., 1993,
97, 13267–13272.
the relaxivity in 1 as well. Aggregation of 1 would affect both
rotational correlation time and access of water (the exchange rate
of water). Furthermore, the electronic T1 of 1 may be lowered, due
to modulation of zfs and/or 2J.13
In summary, a versatile synthetic route to pegylated aminoxyls
is developed, making available water-soluble high-spin diradicals
for biologically related studies. Furthermore, discovery of the
water-induced changes in molecular conformation and magnetic
properties in the present work suggests that structures with
constrained, planarized conformations may be required to obtain
high-spin diradicals with 2J .. RT in water at room temperature.
The synthesis of such diradicals and their assembly into well-
defined, water accessible, high-symmetry structures with negligible
zfs is in progress in this laboratory.
15 K. Inoue and H. Iwamura, Angew. Chem., Int. Ed. Engl., 1995, 34,
927–928.
16 M. Dvolaitzky, R. Chiarelli and A. Rassat, Angew. Chem., Int. Ed.
Engl., 1992, 31, 180–181.
17 (a) The actual singlet–triplet energy gap may be somewhat smaller than
the fitted value of 2J/k 5 650 K, because of the possible slight over-
correction for diamagnetism using point-by-point correction and full
values of Pascal constants for 1 (ESI{); (b) The mass parameter w
accounts mainly for incomplete mass transfer of 1 to the SQUID sample
tube.
18 The values of xT measured by the Evans method are relatively less
accurate, e.g., due to strong interaction of water with the diradical or
incomplete mass transfer of 1.
This research was supported by the National Science
Foundation (grant No. CHE-0414936), including the purchase
of the Electron Paramagnetic Resonance (EPR) spectrometer
(grant No. DMR-0216788). We thank Sara Basiaga and Dr.
Joseph Dumais for their help with the NMR spectroscopy. We
thank Sumit Mukherjee and Kausik Das for their help with the
synthesis.
19 A. Rajca, K. Lu, S. Rajca and C. R. Ross, Chem. Commun., 1999,
1249–1250. The aminoxyl moieties in the 4,6-bis(trifluoromethyl)-N-
N9-di-tert-butyl-1,3-phenylenebis(aminoxyl) diradical are expected to be
more sterically hindered (significantly twisted out-of-plane) than in 1;
consequently, thermal population of the singlet excited state already
above 40 K was detectable by EPR spectroscopy, the value of
Notes and references
{ For details of synthesis and characterization of compounds 1, 2 and their
synthetic intermediates (e.g., 4–6 for 1), see ESI.
1
|D/hc| 5 1.5 6 1022 cm21 was relatively large, and the H resonance
corresponding to the tert-butyl groups of the aminoxyl moieties at
216 ppm was relatively upfield shifted.
20 A. Rajca, S. Utamapanya and J. Xu, J. Am. Chem. Soc., 1991, 113,
9235–9241.
1 (a) Magnetic Properties of Organic Materials, ed. P. M. Lahti, Marcel
Dekker, New York, 1999; (b) Molecular Magnetism, New Magnetic
Materials, ed. K. Itoh and M. Kinoshita, Gordon and Breach,
Amsterdam, 2000; (c) A. Rajca, Chem. Rev., 1994, 94, 871–893.
2 (a) A. Rajca, J. Wongsriratanakul and S. Rajca, Science, 2001, 294,
1503–1505; (b) S. Rajca, A. Rajca, J. Wongsriratanakul, P. Butler and
S. Choi, J. Am. Chem. Soc., 2004, 126, 6972–6986; (c) A. Rajca,
J. Wongsriratanakul and S. Rajca, J. Am. Chem. Soc., 2004, 126,
6608–6626; (d) A. Rajca, J. Wongsriratanakul, S. Rajca and R. L. Cerny,
21 (a) Relaxivity of 3-carboxyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl under
identical conditions is 0.15 s21 mM21; (b) Relaxivities of piperidine and
pyrrolidine S 5 K aminoxyls: P. Vallet, Y. Van Haverbeke,
P. A. Bonnet, G. Subra, J.-P. Chapat and R. N. Muller, Magn.
Reson. Med., 1994, 32, 11–15.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 5047–5049 | 5049