C O M M U N I C A T I O N S
Scheme 2. Synthesis of 4-Substituted Pyroglutamates
Table 2. Enantioselective Synthesis of 4-Alkylidenyl Glutamic Acid
Derivatives under Phase-Transfer Conditionsa
allyl
glutamic acid
derivative
acid derivatives, which is based on the catalytic enantioselective
tandem conjugate addition-elimination of the Schiff base of glycine
tert-butyl ester with activated allylic acetates under phase-transfer
conditions. The simple procedure and high enantioselectivity of the
process offer a practical route to these important targets.
entry
acetate
R
time, h
yield, %b
ee, %c
1
2
3
4
5
6
7
8
2a
2b
2c
2d
2e
2f
Ph
30
48
48
48
34
48
34
40
(S)-3a
(S)-3b
(S)-3c
(S)-3d
(S)-3e
(S)-3f
(S)-3g
(S)-3h
92
72
63
90
72
68
82
63
92
97
89
86
82
80
82
85
4-NO2-Ph
4-MeO-Ph
2-thienyl
2-pyridinyl
2,6-F2Ph
nPr
2g
2h
Acknowledgment. Dedicated to the memory of Professor
Herbert C. Brown.We gratefully acknowledge the National Institutes
of Health (GM 28193) for support of this research.
tBu
a The reaction was conducted with the benzophenone imine of glycine
tert-butyl ester 1 (1 mmol), allylic acetate 2 (1 mmol), CsOH‚H2O (10
equiv), and 4a (10 mol %) in CH2Cl2 for the given time. b Isolated yield.
c Enantiopurities of the products (S)-3 were determined by chiral HPLC
analysis of the product using a (S,S)-Whelk-O1 column (Regis Technologies)
with hexane:2-propanol as the solvent system; in each case, the resolution
of the enantiomers was confirmed by analysis of racemic glutamates (3);
see Supporting Information.
Supporting Information Available: Experimental details, spectral
data, and X-ray crystal data. This material is available free of charge
References
(1) (a) Moloney, M. G. Nat. Prod. Rep. 1998, 205. (b) Brauner-Osborne, H.;
Egebjerg, J.; Nielsen, E. Ø.; Madsen, U.; Krogsgaard-Larsen, P. J. Med.
Chem. 2000, 43, 2609. (c) Augelli-Szafran, C. E.; Schwarz, R. D. Ann.
Rep. Med. Chem. 2003, 38, 21.
(2) (a) Baker, S. R.; Bleakman, D.; Ezquerra, J.; Ballyk, B. A.; Deverill, M.;
Ho, K.; Kamboj, R. K.; Collado, I.; Dom´ınguez, C.; Escribano, A.; Mateo,
A. I.; Pedregal, C.; Rubio, A. Bioorg. Med. Chem. Lett. 2000, 10, 1807.
(b) Wehbe, J.; Rolland, V.; Fruchier, A.; Roumestant, M.; Martinez, J.
Tetrahedron: Asymmetry 2004, 15, 851.
(3) (a) O’Donnell, M. J. Asymmetric Phase-Transfer Reactions. In Catalytic
Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York,
2000; Chapter 10. (b) O’Donnell, M. J. Acc. Chem. Res. 2004, 37, 506.
(4) (a) O’Donnell, M. J.; Bennett, W. D.; Wu, S. J. Am. Chem. Soc. 1989,
111, 2353. (b) O’Donnell, M. J. Aldrichimica Acta 2001, 34, 3. (c)
O’Donnell, M. J.; Delgado, F.; Hostettler, C.; Schwesinger, R. Tetrahedron
Lett. 1998, 39, 8775. (d) O’Donnell, M. J.; Delgado, F.; Dom´ınguez, E.;
de Blas, J.; Scott, W. L. Tetrahedron: Asymmetry 2001, 12, 821.
(5) (a) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414.
(b) Corey, E. J.; Noe, M. C. Org. Synth. 2003, 80, 38.
(6) (a) Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595. (b)
Lygo, B.; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518.
Figure 2. X-ray crystal structure of glutamate product (S)-3d.
(7) (a) Belokon, Y. N.; Kochetkov, K. A.; Churkina, T. D.; Ikonnikov, N. S.;
Vyskocil, S.; Kagan, H. B. Tetrahedron: Asymmetry 1999, 10, 1723. (b)
Jew, S.-s.; Yoo, M.-S.; Jeong, B.-S.; Park, I. Y.; Park, H.-g. Org. Lett.
2002, 4, 4245. (c) Arai, S.; Tsuji, R.; Nishida, A. Tetrahedron Lett. 2002,
43, 9535. (d) Akiyama, T.; Hara, M.; Fuchibe, K.; Sakamoto, S.;
Yamaguchi, K. Chem. Commun. 2003, 1734. (e) Maruoka, K.; Ooi, T.
Chem. ReV. 2003, 103, 3013. (f) Chinchilla, R.; Mazo´n, P.; Na´jera, C.;
Ortega, F. J. Tetrahedron: Asymmetry 2004, 15, 2603. (g) Ohshima, T.;
Shibuguchi, T.; Fukuta, Y.; Shibasaki, M. Tetrahedron 2004, 60, 7743.
(8) This reaction is referred to as an SN2′ reaction in the literature; see ref 9.
However, this is a conjugate addition-elimination that yields an SN2′-
type product.
(9) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. ReV. 2003, 103, 811.
(10) For enantioselective conjugate additions by PTC, see refs 4d, 5b, 7c, 7d,
and 7g.
(11) (a) Ramachandran, P. V.; Reddy, M. V. R.; Rudd, M. T. Chem. Commun.
1999, 1979. (b) Ramachandran, P. V.; Rudd, M. T.; Burghardt, T. E.;
Reddy, M. V. R. J. Org. Chem. 2003, 68, 9310.
(12) Similar racemic products have been prepared via a conjugate addition-
Heck coupling process. Sauvagnat, B.; Lamaty, F.; Lazaro, R.; Martinez,
J. Tetrahedron 2001, 57, 9711.
(13) (a) Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C.
K.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12, 1567. (b) Nakoji,
M.; Kanayama, T.; Okino, T.; Takemoto, Y. J. Org. Chem. 2002, 67,
7418.
(14) Kumar, A. S.; Buddhudu, S. Acta Phys. Hungarica 1990, 67, 171.
(15) The hydrogenation of (S)-4 yields the cis-diastereomer selectively:
Ezquerra, J.; Pedregal, C.; Yruretagoyena, B.; Rubio, A.; Carreno, M.
C.; Escribano, A.; Ruano, J. L. G. J. Org. Chem. 1995, 60, 2925 and
cited references. For the X-ray crystal structure of the N-Boc-protected
(2S,4S-5), see the Supporting Information.
the highest enantioselectivity (97% ee, entry 2), while the deacti-
vated electron-rich allylic acetate 2c gave a lower % ee of product
3c (89% ee, entry 3). In the case of heterocyclic, fluoroaromatic,
and aliphatic allylic acetates, slightly lower enantioselectivities (80-
86%) were obtained.
The structure of product 3d, including the E-double bond
geometry, was elucidated by spectroscopic and X-ray crystal-
lographic techniques (Figure 2). The absolute configuration (2S)
of the stereogenic center resulting from the enantioselective
alkylation was assigned by analogy with earlier studies, which have
shown that 2S products result when cinchonidine-derived catalysts
are used in the PTC alkylation.3-6,7f This assignment was confirmed
by conversion of (S)-3d to the known 4-oxo glutamic acid via the
dihydroxylation-periodate cleavage of the double bond, followed
by hydrolysis14 (see Supporting Information).
The utility of this process was demonstrated by transforming a
representative 4-alkylidene glutamate (S)-3a into 4-oxo glutamates
and 4-substituted pyroglutamates (Scheme 2), which can be readily
converted to 4-substituted glutamic acids15 (see Supporting Infor-
mation).
In conclusion, we have presented a new, general, and practical
procedure for the asymmetric synthesis of 4-alkylidenyl glutamic
JA052638M
9
J. AM. CHEM. SOC. VOL. 127, NO. 39, 2005 13451