J.-E. Kang et al. / Tetrahedron Letters 46 (2005) 7431–7433
7433
cycloaddition: (d) Burdisso, M.; Gandolfi, R.; Grunanger,
P.; Rastelli, A. J. Org. Chem. 1990, 55, 3427; (e) Trost, B.
M.; Crawley, M. Chem. Eur. J. 2004, 10, 2237.
followed by removal of butene or (2) Au(III) promotes
cleavage of tert-butyl group to generate allenic acid,
which immediately cyclize into butenolide. We observed
no allenic acid by TLC in the course of cyclizations of 3.
However, a control experiment using tert-butyl 5-phen-
yl-penta-2,4-dienoate (5) showed that the corresponding
acid indeed slowly formed under AuCl3 catalysis at
80 °C (Eq. 2). Even at rt, a significant amount of dienoic
acid was still observed. Therefore, we believe that
Au(III)-catalyst, at least in part, plays a dual role of
facilitation of hydrolysis of tert-butyl ester as well as
cyclization of allenoic acid into 4.
3. (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104,
2127, and references cited therein; (b) Marshall, J. A.; Wolf,
M. A.; Wallace, E. M. J. Org. Chem. 1997, 62, 367; (c) Ma,
S.; Wu, S. Tetrahedron Lett. 2001, 42, 4075; (d) Ma, S.; Yu,
Z. Angew. Chem., Int. Ed. 2002, 41; (e) Ma, S.; Yu, Z. Org.
Lett. 2003, 5, 1507; (f) Ma, S.; Yu, Z. Chem. Eur. J. 2004,
10, 2078, 1775; (g) Gill, G. B.; Idris, M. S. H Tetrahedron
Lett. 1985, 39, 4811; (h) de March, P.; Font, J.; Gracia, A.;
Qingying, Z. J. Org. Chem. 1995, 60, 1814; (i) Evans, D. A.;
Murry, J. A.; Kozlowski, M. C. J. Am. Chem. Soc. 1996,
118, 5814; (j) Szlosek, M.; Figadere, B. Angew. Chem., Int.
Ed. 2000, 39, 1799; (k) Movassaghi, M.; Jacobsen, E. N. J.
Am. Chem. Soc. 2002, 124, 2456; (l) Danishefsky, S.;
Kitahara, T.; Schuda, P. F.; Etheredge, S. J. J. Am. Chem.
Soc. 1976, 98, 3028; (m) Grieco, P. A.; Ohfune, Y.;
Majetich, G. J. Org. Chem. 1979, 44, 3092.
O
O
AuCl3 (5 %)
CH2Cl2, 80 o
O
OH
C
~30 % conv.
after 36 h
5
4. For a review, see: (a) Modern Allene Chemistry; Krause, N.,
Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, 2004;
Chapter 4; Optically pure allenoate: (b) Nishibayashi, Y.;
Singh, J. D.; Uemura, S. Tetrahedron Lett. 1994, 35, 3115;
(c) Mikami, K.; Yoshida, A. Angew. Chem., Int. Ed. 1997,
36, 858; (d) Tanaka, K.; Otsubo, K.; Fuji, K. Tetrahedron
Lett. 1996, 37, 3735; For optically pure allenic acid based
on kinetic resolution of racemic allenic acid: (e) Ma, S.; Wu,
S. Chem. Commun. 2001, 441; (f) Ma, S.; Shi, Z. Chem.
Commun. 2002, 540; (g) Pinho e Melo, T. M. V. D.;
Cardoso, A. L.; Rocha Gonsalves, A. M. dÕA.; Storr, R. C.;
Pessoa, J. C.; Paixao, J. A.; Beja, A. M.; Silva, M. R.
Tetrahedron Lett. 2003, 44, 6409.
ð2Þ
In conclusion, we have demonstrated that AuCl3 effi-
ciently catalyzes the cyclization of tert-butyl allenoates,
providing a variety of c-butenolides. Possibility of chi-
rality transfer of enantiopure substrate is currently being
explored in our laboratory.
Acknowledgments
5. For an excellent review on homogeneous gold catalysis, see:
(a) Hashmi, A. S. K. Gold Bull. 2004, 37, 51; (b) Hoffmann-
Roeder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387;
For recent reports on the novel reactivity of Au(I) and
Au(III) catalyst, see: Rearrangement: (c) Sherry, B. D.;
Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978; (d) Shi,
X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 5802; (e) Markham, J. P.; Staben, S. T.; Toste, F. D.
J. Am. Chem. Soc. 2005, 127, 9708; Cyclization: (f) Nieto-
Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.;
Cardenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed.
2004, 43, 2402; (g) Zhang, L.; Kozmin, S. A. J. Am. Chem.
Soc. 2004, 126, 11806; (h) Shi, Z.; He, C. J. Am. Chem. Soc.
2004, 126, 5964; (i) Asao, N.; Sato, K.; Menggenbateer;
Yamamoto, Y. J. Org. Chem. 2005, 70, 3682; Heterocycles:
(j) Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc.
2004, 126, 11164; (k) Hashmi, A. S. K.; Schwarz, L.; Chio,
J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39,
2285; (l) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats,
J. W. Org. Lett. 2004, 6, 4391; Hydroamination: (m)
Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5,
3349.
This was supported by the research fund from Korea
Sanhak Foundation in 2005. This work was also sup-
ported by a research fund from Research Institute for
Natural Sciences at Hanyang University in 2004.
J.E.K. thanks the BK21 program for the financial
support.
Supplementary data
Supplementary data associated with this article can be
References and notes
1. (a) Cortez, D. A. G.; Fernandes, J. B.; Vieria, P. C.; Da
Silva, D. G. F.; Ferreira, A. G.; Cass, Q. B.; Pirani, J. R.
Phytochemistry 1998, 49, 2493; (b) Ishikawa, T.; Nishigaya,
K.; Uchikoshi, H.; Chen, I. J. Nat. Prod. 1998, 64, 534; (c)
Larock, R. D.; Riefling, B.; Fellows, C. A. J. Org. Chem.
1978, 43, 131.
6. (a) Krause, N.; Morita, N. Org. Lett. 2004, 6, 4121; (b)
Hoffmann-Roder, A.; Krause, N. Org. Lett. 2001, 3,
2537.
7. Lang, R. W.; Hansen, H.-J. In Organic Syntheses; Wiley:
New York, 1990; Collect. Vol. VII, pp 232–235.
8. (a) Hashmi, A. S. K.; Weyrauch, J. P.; Rudolph, M.;
Kurpejovic, E. Angew. Chem., Int. Ed. 2004, 43, 6545; (b)
Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M. J. Am.
Chem. Soc. 2005, 127, 6178.
2. Dihydroxylation: (a) Mukaiyama, T.; Suzuki, K.; Yamada,
T.; Tabusa, F. Tetrahedron 1990, 46, 265; epoxidation: (b)
Kuramochi, K.; Nagata, S.; Itaya, H.; Matsubara, Y.;
Sunoki, T.; Uchiro, H.; Takao, K.-I.; Kobayashi, S.
Tetrahedron 2003, 59, 9743; cyclopropanation: (c) Huang,
H.; Chen, Q. Tetrahedron: Asymmetry 1999, 10, 1295;