V. L. de Talance´ et al. / Tetrahedron Letters 46 (2005) 8023–8025
2. Selected recent examples of asymmetric synthesis of
8025
Maguire, R. Bioorg. Med. Chem. Lett. 1999, 9, 1437; (g)
Cheng, Q.; Kiyota, H.; Yamaguchi, M.; Horiguchi, T.;
Oritani, T. Bioorg. Med. Chem. Lett. 2003, 13, 1075.
6. (a) De Kimpe, N.; De Smaele, D. J. Heterocyclic Chem.
2000, 37, 607; (b) Pannecoucke, X.; Outurquin, F.;
Paulmier, C. Eur. J. Org. Chem. 2002, 995; (c) Outurquin,
F.; Pannecoucke, X.; Berthe, B.; Paulmier, C. Eur. J. Org.
Chem. 2002, 1007.
´
azetidines: (a) Pedrosa, R.; Andres, C.; Nieto, J.; del
Pozo, S. J. Org. Chem. 2005, 70, 1408; (b) Mangelinckx,
S.; Boeykens, M.; Vliegen, M.; Van der Eycken, J.; De
Kimpe, N. Tetrahedron Lett. 2005, 46, 525; (c) Enders, D.;
Gries, J.; Kim, Z.-S. Eur. J. Org. Chem. 2004, 4471; (d)
Couty, F.; Evano, G.; Rabasso, N. Tetrahedon: Asymme-
try 2003, 14, 2407; (e) Burtoloso, A. C. B.; Correia, C. R.
D. Tetrahedron Lett. 2004, 45, 3355.
7. (a) Agami, C.; Comesse, S.; Kadouri-Puchot, C. J. Org.
´
3. For azetidines used as ligands, see for example: (a)
Starmans, W. A. J.; Walgers, R. W. A.; Thijs, L.; de
Gelder, R.; Smits, J. M. M.; Zwanenburg, B. Tetrahedron
1998, 54, 4991; (b) Shi, M.; Jiang, J.-K. Tetrahedron:
Asymmetry 1999, 10, 1673; (c) Hermsen, P. J.; Cremers, J.
G. O.; Thijs, L.; Zwanenburg, B. Tetrahedron Lett. 2001,
42, 4243; (d) Wilken, J.; Erny, S.; Wassmann, S.; Martens,
J. Tetrahedron: Asymmetry 2000, 11, 2143; (e) Couty, F.;
Prim, D. Tetrahedron: Asymmetry 2002, 13, 2619; (f)
Keller, L.; Sanchez, M. V.; Prim, D.; Couty, F.; Evano,
G.; Marrot, J. J. Organomet. Chem. 2005, 690, 2306.
4. For azetidines as components in natural products, see, for
example: (a) Akihisa, T.; Mafune, S.; Ukiya, M.; Kimura,
Y.; Yasukawa, K.; Suzuki, T.; Tokuda, H.; Tanabe, N.;
Fukuoka, T. J. Nat. Prod. 2004, 67, 479; (b) Takikawa,
H.; Maeda, T.; Seki, M.; Koshino, H.; Mori, K. J. Chem.
Soc., Perkin Trans. 1 1997, 97; (c) Yoda, H.; Uemura, T.;
Takabe, K. Tetrahedron Lett. 2003, 44, 977; (d) Singh, S.;
Crossley, G.; Ghosal, S.; Lefievre, Y.; Pennington, M. W.
Tetrahedron Lett. 2005, 46, 1419.
Chem. 2002, 67, 2424; (b) Agami, C.; Comesse, S.; Guesne,
S.; Kadouri-Puchot, C.; Martinon, L. Synlett 2003, 1058.
8. Agami, C.; Comesse, S.; Kadouri-Puchot, C. J. Org.
Chem. 2002, 67, 1496.
9. Berthe, B.; Outurquin, F.; Paulmier, C. Tetrahedron Lett.
1997, 38, 1393.
10. (a) Atomic coordinates, bond lengths and angles and
thermal parameters have been deposited at the Cambridge
Crystallographical Data Center with the deposition num-
ber CCDC 277622; (b) Spectral data for compound 2d: mp
20
1
71 °C. ½aꢀD ꢁ106 (c 0.8, CHCl3). H NMR (CDCl3): 0.00
(s, 9H), 0.67 (s, 9H), 1.43–1.53 (m, 1H), 1.76–1.90 (m, 1H),
2.66 (t, J = 8.3 Hz, 1H), 3.21 (td, J = 2.3 and 8.0 Hz, 1H),
3.28–3.43 (m, 2H), 3.55 (m, 2H), 3.75 (t, J = 10.5 Hz, 1H),
6.95–7.25 (m, 5H). 13C NMR: ꢁ2.0, 24.0, 27.0, 34.1, 48.5,
58.0, 62.7, 66.3, 68.2, 128.1, 128.5, 129.6, 138.5. Anal.
Calcd for C19H32BrNOSi: C, 57.27; H, 8.09; N, 3.52.
Found: C, 57.33; H, 8.23; N, 3.41.
11. Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
12. Lambert, J. B.; Zhao, Y.; Emblidge, R. W.; Salvador, L.
A.; Liu, X.; So, J.-H.; Chelius, E. C. Acc. Chem. Res. 1999,
32, 183.
5. For synthesis and biological activities of some azetidines
derivatives, see for example: (a) Frigola, J.; Torrens, A.;
´
Castrillo, J. A.; Mas, J.; Vano, D.; Berrocal, J. M.; Calvet,
13. A similar silicon-directed 4-exo-trig electrophilic cycliza-
tion of homoallylic alcohols led to the formation of
oxetanes: Rofoo, M.; Roux, M.-C.; Rousseau, G. Tetra-
hedron Lett. 2001, 42, 2481.
˜
´
´
C.; Salgado, L.; Redondo, J.; Garcıa-Granda, S.; Valentı,
E.; Quintana, J. R. J. Med. Chem. 1994, 37, 4195; (b)
Lautar, S. L.; Rojas, C.; Slusher, B. S.; Wozniak, K. M.;
Wu, Y.; Thomas, A. G.; Waldon, D.; Li, W.; Ferraris, D.;
Belyakov, S. Brain Res. 2005, 1048, 177; (c) Morrissette,
M. M.; Stauffer, K. J.; Williams, P. D.; Lyle, T. A.; Vacca,
J. P.; Krueger, J. A.; Lewis, S. D.; Lucas, B. J.; Wong, B.
K.; White, R. B.; Miller-Stein, C.; Lyle, E. A.; Wallace, A.
A.; Leonard, Y. M.; Welsh, D. C.; Lynch, J. J.; McMas-
ters, D. R. Bioorg. Med. Chem. Lett. 2004, 14, 4161; (d)
20
14. Spectral data for compound 5b: ½aꢀD ꢁ93 (c 1.0, CHCl3).
1H NMR (CDCl3): 0.73 (t, J = 6.0 Hz, 3H), 1.19–1.37 (m,
4H), 2.31–2.23 (m, 4H), 2.57 (q, J = 5.7 Hz, 1H), 3.45 (dd,
J = 8.7 and 10.7 Hz, 1H), 3.62 (dd, J = 4.5 and 10.7 Hz,
1H), 3.86 (dd, J = 4.5 and 8.7 Hz, 1H), 6.10 (q, J = 7.5 Hz,
1H), 6.19 (d, J = 7.5 Hz, 1H), 7.12–7.35 (m, 5H). 13C
NMR: 14.2, 19.3, 33.8, 37.4, 53.2, 61.8, 67.0, 109.7, 127.3,
127.8, 128.8, 131.6, 141.1. Anal. Calcd for C15H22NOBr: C,
57.70; H, 7.10; N, 4.49. Found: C, 58.19; H, 7.40; N, 4.34.
15. A stereospecific anti elimination of b-silyl azides has been
reported: Chabaud, L.; Landais, Y. Tetrahedron Lett.
2003, 44, 6995.
Kozikowski, A. P.; Tuckmantel, W.; Reynolds, I. J.;
¨
Wroblewski, J. T. J. Med. Chem. 1990, 33, 1561; (e) Wu,
W.-L.; Caplen, M. A.; Domalski, M. S.; Zhang, H.;
Fawzi, A.; Burnett, D. A. Bioorg. Med. Chem. Lett. 2002,
12, 3157; (f) Hanessian, S.; Bernstein, N.; Yang, R.-Y.;