C O M M U N I C A T I O N S
Since C60 has a higher affinity for free-base porphyrin than for
Zn porphyrin,12a we aimed at the formation of a mixed aggregate
consisting of 2 and 15 mol % of a 1:1 ratio of 1 and C60.8
Preliminary fluorescence data indicate cascade energy transfer from
OPV4 via zinc porphyrin to free-base porphyrin followed by
electron transfer from 1 to C60.8
In conclusion, we have shown the first examples of energy and
electron transfer in multichromophoric, π-conjugated assemblies
in water by construction of mixed stacks consisting of (OPV4)4-
Zn porphyrin, (OPV4)4-H2 porphyrin, and C60. Currently, we are
determining speeds for the different energy and electron transfer
steps.
Figure 2. PL spectra for the addition of (A) 0-36 mol % of 1 to 2 in
water, (B) 0-30 mol % of 1 in water to 2 in water (in both cases λex ) 346
nm, [2] ) 5 × 10-7 M, T ) 20 °C).
Acknowledgment. We would like to thank Dr. Xianwen Lou
for the matrix-assisted laser desorption time-of-flight (MALDI-TOF)
MS measurements. Pascal Jonkheijm is acknowledged for the AFM
measurement. The authors thank The Netherlands Organization for
Scientific Research (CW-NWO) for funding.
Supporting Information Available: Synthetic route to 1 and 2
and their full characterization. Optical comparison of 1 with reference
compounds (Figure S1). Solvent and temperature-dependent UV/vis
for 1 (Figure S2) and for 2 (Figure S3). AFM and height profile for 1
(Figure S4). UV/vis and quenching data for addition of C60 to,
respectively, 1 and 2 (Figures S5-S7). PIA spectra (Figure S8) and
energetic diagrams for 1 and 2 (Figure S9), including data for the Weller
equation (Table S1). PL data for a mixture of 1, 2, and C60 (Figure
S10). This material is available free of charge via the Internet at http://
pubs.acs.org.
Figure 3. Normalized PL spectra for mixtures containing 0-75 mol % of
C60 in (A) 1 and (B) 2 in water (λex ) 346 nm, 5 × 10-7 M, T ) 20 °C).
References
(1) Hu, X.; Schulten, K. Phys. Today 1997, 29-34.
(2) (a) Miyatake, T.; Tamiaki, H.; Holzwarth, A. R.; Schaffner, K. HelV. Chim.
Acta 1999, 82, 797-810. (b) Sugiyasu, K.; Fujita, N.; Shinkai, S. Angew.
Chem., Int. Ed. 2004, 43, 1229-1233. (c) Hoeben, F. J. M.; Herz, L. M.;
Daniel, C.; Jonkheijm, P.; Schenning, A. P. H. J.; Silva, C.; Meskers, S.
C. J.; Beljonne, D.; Phillips, R. T.; Friend, R. H.; Meijer, E. W. Angew.
Chem., Int. Ed. 2004, 43, 1976-1979.
(3) (a) Schenning, A. P. H. J.; v. Herrikhuyzen, J.; Jonkheijm, P.; Chen, Z.;
Wurthner, F.; Meijer, E. W. J. Am. Chem. Soc. 2002, 124, 10252-10253.
(b) Hasobe, T.; Kamat, P. V.; Troiani, V.; Solladie´, N.; Ahn, T. K.; Kim,
S. K.; Kim, D.; Kongkanand, A.; Kuwabata, S.; Fukuzumi, S. J. Phys.
Chem. B 2005, 109, 19-23.
Figure 4. Proposed molecular picture of a co-aggregate of 1 and C60.
Photoinduced absorption of 1 (dashed) and of a 1:1 ratio of 1 with C60
(solid) (λex ) 361 nm, 10-4 M, T ) 20 °C).
transfer band (1: λ ) 672 nm, 2: λ ) 625 nm), both of which are
known to be induced by porphyrin-fullerene interactions.13 Since
scattering effects were observed when the C60 incorporation
exceeded 50 mol %, these collective observations indicate formation
of a 1:1 co-aggregate of 1 or 2 with C60 in water. These complexes
yielded clear solutions that were stable in time. Furthermore,
photoluminescence spectra of mixtures (λex ) 346 nm, Figure 3)
show a dramatic quenching of porphyrin emission upon addition
of C60 to either 1 or 2, suggesting electron transfer to incorporated
C60. Near quantitative quenching of 1 and 2 luminescence is reached
at ∼20 mol % C60 incorporation.8
(4) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J.
Chem. ReV. 2005, 105, 1491-1546.
(5) (a) Kuciauskas, D.; Lidell, P. A.; Lin, S.; Johnson, T. E.; Weghorn, S. J.;
Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc.
1999, 121, 8604-8614. (b) Miller, M. A.; Lammi, R. K.; Prathapan, S.;
Holten, D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 6634-6649.
(6) Rybtchinski, B.; Sinks, L. E.; Wasielewski. M. R. J. Am. Chem. Soc. 2004,
126, 12268-12269.
(7) (a) Jonkheijm, P.; Fransen, M.; Schenning, A. P. H. J.; Meijer, E. W. J.
Chem. Soc., Perkin Trans. 2 2001, 1280-1286. (b) Hoeben, F. J. M.;
Shklyarevskiy, I. O.; Pouderoijen, M. J.; Engelkamp, H.; Schenning, A.
P. H. J.; Christianen, P. C. M.; Maan, J. C.; Meijer, E. W. Submitted.
To directly prove intermolecular electron transfer to C60, pho-
toinduced absorption (PIA) was performed on a 1:1 mixed assembly
of 1 and C60 (Figure 4). The PIA spectrum shows a band at λ )
(8) See Supporting Information.
(9) Hashimoto, T.; Choe, Y.-K.; Nakano, H.; Hirao, K. J. Phys. Chem. A
1999, 103, 1894-1904.
(10) Schenning, A. P. H. J.; Hubert, D. H. W.; Feiters, M. C.; Nolte, R. J. M.
1070 nm that is characteristic for the C60 radical anion.14
A
Langmuir 1996, 12, 1572-1577.
bleaching band at λ ) 550 nm indicates that less porphyrins occupy
their ground state, suggesting that the porphyrin radical cation is
responsible for the observed absorption band at λ ) 750 nm.
However, on the basis of the Weller equation15 for these systems,
the difference in driving force for charge separation into either
OPV4 or porphyrin radical cation and C60 radical anion is negligible
at room temperature.8 Therefore, assignment of the band observed
at λ ) 750 nm is difficult. A 1:1 mixed assembly of 2 and C60 did
not show the λ ) 1070 nm band, which will be further investigated
on shorter time scales.8
(11) Chambron, J.-C.; Heitz, V.; Sauvage, J.-P. In The Porphyrin Handbook;
Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New
York, 2000; Vol. 6.
(12) (a) Sun, D.; Tham, F. S.; Reed, C. A.; Chaker, L.; Boyd, P. D. W. J. Am.
Chem. Soc. 2002, 124, 6604-6612. (b) Boyd, P. D. W.; Reed, C. A. Acc.
Chem. Res. 2005, 38, 235-242.
(13) Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.; Sakamoto,
S.; Yamaguchi, K. J. Am. Chem. Soc. 1999, 121, 9477-9478.
(14) Imahori, H.; Tamaki, K.; Guldi, D. M.; Luo, C.; Fujitsuka, M.; Ito, O.;
Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 2607-2617.
(15) Weller, A. Z. Phys. Chem. 1982, 133, 93.
JA054406T
9
J. AM. CHEM. SOC. VOL. 127, NO. 39, 2005 13485