A. Hagfeldt and L. Kloo, J. Phys. Chem. B, 2003, 107, 13665; (f)
applications down to 220 uC. This is due to their particularly low
viscosity which may help to overcome traditional problems of slow
mass transport and low electrical conductivity found in the
traditional, more viscous ionic liquids at these low temperatures.
We could further show that the thermal stability for applications at
temperatures below 50 uC is excellent and an operating
temperature range of up to 100 uC may be realistic in closed
systems. We anticipate that these new ionic liquids will find
applications in the area of low temperature separation
technologies (e.g., gas separation) and electrochemical devices
such as dye-sensitized-solar-cells.
P. Wang, S. M. Zakeeruddin, I. Exnar and M. Gra¨tzel, Chem.
Commun., 2002, 24, 2972; (g) P. Wang, S. M. Zakeeruddin, P. Comte,
I. Exnar and M. Gra¨tzel, J. Am. Chem. Soc., 2003, 125, 1166.
5 M. Holzapfel, C. Jost, A. Prodi-Schwab, F. Krumeich, A. Wu¨rsig,
H. Buqa and P. Nova´k, Carbon, 2005, 43, 1488.
6 D. Morgan, L. Ferguson and P. Scovazzo, Ind. Eng. Chem. Res., 2005,
44, 4815.
7 A. A. Fannin, D. A. Floreali, L. A. King, J. S. Landers, B. J. Piersma,
D. J. Stech, R. L. Vaughan, J. S. Wilkes and J. L. Williams, J. Phys.
Chem., 1984, 88, 2614.
8 Y. Yoshida, K. Muroi, A. Otsika, G. Saito, M. Takahashi and T. Yoko,
Inorg. Chem., 2004, 43, 1458.
9 D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth and
G. B. Deacon, Chem. Commun., 2001, 16, 1430.
10 (a) J. M. Pringle, J. Golding, C. M. Forsyth, D. B. Deacon, M. Forsyth
and D. R. MacFarlane, J. Mater. Chem., 2002, 12, 3475; (b) P. Wang,
S. M. Zakeeruddin, R. Humprey-Bake and M. Gra¨tzel, Chem. Mater.,
2004, 16, 2694.
11 R. Hagiwara, T. Hirashige, T. Tsuda and Y. Ito, J. Electrochem. Soc.,
2002, 149, D1.
Notes and references
1 Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-
VCH, Weinheim, Germany, 2003.
2 (a) T. Welton, Coord. Chem. Rev., 2004, 248, 2459; (b) N. Jain,
A. Kumar, S. Chauhan and S. M. S. Chauhan, Tetrahedron, 2005, 61,
1015.
3 (a) J. Eßer, P. Wasserscheid and A. Jess, Green Chem., 2004, 6, 316; (b)
Y. A. Beste, H. Schoenmakers, W. Arlt, M. Seiler and C. Jork, Ger.
Offen., 2005, DE 10336555, WO 2005016484.
4 (a) N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhoˆte,
H. Pettersson, A. Azam and M. Gra¨tzel, J. Electrochem. Soc., 1996,
143, 3099; (b) H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara,
Y. Ito and Y. Miyazaki, Chem. Lett., 2001, 30, 26; (c) W. Kubo,
T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, Chem.
Commun., 2002, 4, 374; (d) S. Murai, S. Mikoshiba, H. Sumino, T. Kato
and S. Hayase, Chem. Commun., 2003, 13, 1534; (e) H. Paulsson,
12 H. Matsumoto, T. Matsuda and Y. Miyazaki, Chem. Lett., 2000, 72,
2275.
13 L. Xiao and K. E. Johnson, Can. J. Chem., 2004, 82, 491.
14 M. Ma and K. E. Johnson, in Proceedings of the Ninth International
Symposium on Molten Salts, ed. C. L. Hussey, D. S. Newman,
G. Mamantov and Y. Ito, The Electrochemical Society, Pennington,
NJ, 1994, vol. 94-13, pp. 179.
15 H. Paulsson, M. Berggrund, E. Svantesson, A. Hagfeldt and L. Kloo,
Sol. Energy Mater. Sol. Cells, 2004, 82, 345.
16 K. R. Seddon, A. Stark and M.-J. Torres, Pure Appl. Chem., 2000, 72,
2275.
5082 | Chem. Commun., 2005, 5080–5082
This journal is ß The Royal Society of Chemistry 2005