N. Heße, R. Fröhlich, I. Humelnicu, E.-U. Würthwein
FULL PAPER
(43860 cm–1, sh, 59688 m–1 cm–1) nm. C42H34CuF6N6O6S2·
2C4H10O (1108.65): calcd. C 52.52 H 3.57 N 8.75; found C 52.49
H 3.30 N 8.74.
[9]
E. I. Lerner, S. J. Lippard, J. Am. Chem. Soc. 1976, 98, 5397–
5398.
T. Kajiwara, A. Kamiyama, T. Ito, Chem. Commun. 2002,
1256–1257.
J. Barker, M. Kilner, M. M. Mahmoud, S. C. Wallwork, J. Org.
Chem., Dalton Trans. 1989, 837–841.
R. Norrestam, Acta Crystallogr. Sect. C 1984, 40, 955–957.
M. N. Kopylovich, A. J. L. Pombeiro, A. Fischer, L. Kloo, V.
Yu. Kukushkin, Inorg. Chem. 2003, 42, 7239–7248.
N. Heße, Dissertation, Univ. Münster, 2004.
F. A. Cotton, L. M. Daniels, J. H. Matonic, X. Wang, C. A.
Murillo, Polyhedron 1997, 16, 1177–1191.
J. F. Parks, R. H. Holm, Inorg. Chem. 1968, 7, 1408–1416.
J. Feldman, S. J. McLain, A. Parthasarathy, W. J. Marshall,
C. J. Calabrese, S. D. Arthur, Organometallics 1997, 16, 1514.
This substanz was first synthesized by J. K. Eberhardt, Ph. D.
work, Univ. Münster, 2002.
Chr. Möllers, J. Prigge, B. Wibbeling, R. Fröhlich, A. Brockme-
yer, H. J. Schäfer, E. Schmälzlin, C. Bräuchle, K. Meerholz, E.-
U. Würthwein, Eur. J. Org. Chem. 2003, 1198–1208.
G. W. Coates, D. R. Moore, Angew. Chem. 2004, 116, 6784–
6806; Angew. Chem. Int. Ed. 2004, 43, 6618–6639.
[10]
[11]
X-ray Crystal Structure Analysis for [(1a)2·Cu(OTf)2]: Formula
C40H34CuN6·CF3SO3·2C4H10O, M = 1108.65, blue-purple crystal
0.35×0.30×0.25 mm,
a = 10.607(1), b = 11.703(1), c =
[12]
[13]
12.758(1) Å, α = 99.27(1), β = 108.30(1), γ = 113.76(1)°, V =
1298.6(2) Å3, ρcalcd. = 1.418 g cm–3, μ = 5.81 cm–1, empirical ab-
sorption correction (0.823 Յ T Յ 0.868), Z = 1, triclinic, space
[14]
[15]
¯
group P1 (No. 2), λ = 0.71073 Å, T = 198 K, ω and φ scans, 9438
reflections collected ( h, k, l), [(sinθ)/λ] = 0.68 Å–1, 6383 inde-
pendent (Rint = 0.025) and 5446 observed reflections [I Ն 2σ(I)],
341 refined parameters, R = 0.048, wR2 = 0.131, max. residual elec-
tron density 1.05 (–0.47) e·Å–3 close to the ether molecules, hydro-
gen atoms at N3 and N5 from difference Fourier calculations, other
calculated and all refined as riding atoms.
[16]
[17]
[18]
[19]
(1,2,4-Triphenyl-1,3,5-triazapenta-1,4-diene)zinc(II
)
Chloride
(1a·ZnCl2): 30 mg (0.10 mmol) of triazapentadiene 1a was dis-
solved in 4 mL of ethanol. Insoluble residues were filtered off. Then
the solution was treated dropwise with a solution of 14 mg
(0.10 mmol) of zinc(ii) chloride hydrate in 0.4 mL of ethanol. A
light colorless precipitate formed, which was dissolved by addition
of as little as possible of DMF. After filtration, diethyl ether was
allowed to diffuse, until colorless crystals formed. Low yield, not
sufficient for complete analysis and spectroscopy. M.p. 193 °C.
[20]
[21]
[22]
S. Grimme, J. Chem. Phys. 2003, 118, 9095–9102.
D. Andrae, U. Häuβermann, M. Dolg, H. Stoll, H. Preuß,
Theor. Chim. Acta 1990, 77, 123–141.
[23]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Mont-
gomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M.
Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas,
J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C.
Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson,
P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J.
Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.
Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez,
M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Re-
vision A.11.3, Gaussian, Inc., Pittsburgh PA, 2002.
MS (MALDI, Matrix DTCB): m/z (%)
= 398–404 (8)
[C20H16N3ZnClH+], 300 (100) [C20H17N3H+].
X-ray Crystal Structure Analysis for 1a·ZnCl2: Formula
C20H17Cl2N3Zn, 435.64, colourless crystal
M
=
0.50×0.35×0.20 mm, a = 9.884(1), b = 10.390(1), c = 11.032(1) Å,
α = 110.13(1), β = 98.74(1), γ = 107.80(1)°, V = 970.0(2) Å3, ρcalcd.
= 1.492 g cm–3, μ = 15.50 cm–1, empirical absorption correction
¯
(0.511 Յ T Յ 0.747), Z = 2, triclinic, space group P1 (No. 2), λ =
0.71073 Å, T = 198 K, ω and φ scans, 7412 reflections collected
( h, k, l), [(sinθ)/λ] = 0.67 Å–1, 4720 independent (Rint = 0.016)
and 4409 observed reflections [I Ն 2σ(I)], 241 refined parameters,
R = 0.024, wR2 = 0.061, max. residual electron density 0.33
(–0.40) e·Å–3, hydrogen atoms at N3 and N5 from difference Fou-
rier calculations, others calculated and all refined as riding atoms.
[24]
[25]
N. R. Kestner, J. E. Combariza, Rev. Comput. Chem. 1999, 13,
99–132.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pom-
elli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.
Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J.
Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W.
Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.01,
Gaussian, Inc., Wallingford CT, 2004.
Acknowledgments
The authors thank the Deutsche Forschungsgemeinschaft [Sonder-
forschungsbereich 424 and Graduate College “Hochreaktive
Mehrfachbindungssysteme” (Postdoktorandenstipendium to I. H.
2001–2002)] and the Fonds der Chemischen Industrie (Frankfurt)
for financial support.
[1] J. A. Elvidge, N. R. Barot, in The Chemistry of Functional
Groups, Supplement A (“The Chemistry of the C=N Group”),
Wiley, Chichester, 1989, vol. 2, p. 1168–1249.
[2] L. Bourget-Merk, M. F. Lappert, J. R. Severn, Chem. Rev.
2002, 102, 3031.3066.
[3] H. Ley, F. Müller, Ber. Dtsch. Chem. Ges. 1907, 40, 2950–2958.
[4] S. W. Breuer, R. W. H. Small, Acta Crystallogr. Sect. C 1991,
47, 871–872.
[5] A. R. Siedle, R. J. Webb, F. E. Behr, R. A. Newmark, D. A.
Weil, K. Erickson, R. Naujok, M. Brostrom, M. Mueller, S.-
H. Chou, V. G. Young Jr., Inorg. Chem. 2003, 42, 932–934.
[6] H. V. R. Dias, S. Singh, Inorg. Chem. 2004, 43, 5786–5788.
[7] H. V. R. Dias, S. Singh, Inorg. Chem. 2004, 43, 7396–7402.
[8] M. M. Turnbull, M. Y. Wei, R. D. Willett, J. Coord. Chem.
1995, 35, 11–17.
[26]
[27]
J. K. Eberhardt, R. Fröhlich, E.-U. Würthwein, J. Org. Chem.
2003, 68, 6690–6694.
Unfortunately, the chelate complex of PdCl2 with N-acylamid-
ine (CH3)HN–CH=N–CHO was not considered in ref.[26] (Fig-
ure 2). Using the basis set B3LYP/6-31+G(d,p) for C,H,N,O,Cl
and LANL2DZ + polarisation functions (A. W. Ehlers, M.
Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F.
Köhler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys.
Lett. 1993, 208, 111–114) and including ZPE, a total energy of
2196
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2005, 2189–2197