C. H. Cho et al.
Bull. Chem. Soc. Jpn., 78, No. 9 (2005) 1671
Hz), 131.6 (d, JCP ¼ 2:8 Hz), 133.6 (d, JCP ¼ 97:7 Hz), 135.1 (d,
JCP ¼ 97:7 Hz), 171.0, 171.2, 212.7 (d, JCP ¼ 13:5 Hz); 31P NMR
(121.5 MHz, C6D6) ꢃ 29; IR (ZnSe) 504, 702, 744, 1121, 1439 (P–
Ph), 1733 (C=O) cmꢂ1; HRMS (Mþ) Found: 414.1231, Calcd for
C22H23O6P: 414.1232.
But-3-enyl Diethylphosphonoformate (24): Colorless oil;
1H NMR (400 MHz, CDCl3) ꢃ 1.29 (t, J ¼ 9:5 Hz, 6H), 2.32–
2.42 (m, 2H), 4.11–4.25 (m, 6H), 4.96–5.10 (m, 2H), 5.60–5.75
(m, 1H); 13C NMR (100 MHz, CDCl3) ꢃ 16.0 (d, JCP ¼ 5:5 Hz),
32.6, 64.2 (d, JCP ¼ 11:8 Hz), 65.6, 117.5, 133.0, 166.7 (d, JCP
¼
3-Oxo-4-(bis(4-methylphenyl)phosphinoyl)methylcyclopen-
tane-1,1-dicarboxylic Acid Dimethyl Ester (19): Colorless oil;
1H NMR (400 MHz, C6D6) ꢃ 1.78–1.93 (m, 1H), 1.94 (d, J ¼ 11:9
Hz, 6H), 2.19–2.35 (m, 1H), 2.65–2.80 (m, 2H), 2.85–2.97 (m,
2H), 3.10 (s, 3H), 3.21 (s, 3H), 3.22–3.38 (m, 1H), 6.79–6.89
(m, 4H), 7.64–7.79 (m, 4H); 31P NMR (121.5 MHz, C6D6) ꢃ 29.
3-Oxo-4-diphenylphosphinoylmethylcyclopentane-1,1-dicar-
356:5 Hz); 31P NMR (121.5 MHz, CDCl3) ꢃ ꢂ4; IR (ZnSe) 559,
586, 1022, 1164 (P=O), 1212, 1274, 1719 (C=O), 2985 cmꢂ1
HRMS (Mþ) Found: 236.0840, Calcd for C9H17O5P: 236.0814.
;
Supporting Information
Additional spectral data of all new compounds. This material is
bcsj/.
1
boxylic Acid Diethyl Ester (20): Colorless oil; H NMR (400
MHz, C6D6) ꢃ 0.74 (t, J ¼ 7:2 Hz, 3H), 0.83 (t, J ¼ 7:2 Hz, 3H),
1.81–1.93 (m, 1H), 2.31 (dd, J ¼ 12:0, 13.6 Hz, 1H), 2.70–2.83
(m, 2H), 2.89–3.02 (m, 2H), 3.23–3.36 (m, 1H), 3.68–3.80 (m,
2H), 3.86 (q, J ¼ 7:1 Hz, 2H), 6.93–7.07 (m, 6H), 7.64–7.80
References
1
a) B. Giese, ‘‘Radicals in Organic Synthesis: Formation of
(m, 4H); 13C NMR (100 MHz, C6D6) ꢃ 13.7, 13.8, 30.7 (d, JCP
¼
Carbon–Carbon Bonds,’’ Pergamon, New York (1986). b) D. P.
Curran, ‘‘In Comprehensive Organic Synthesis,’’ ed by B. M.
Trost and I. Fleming, Pergamon Press, Oxford (1991), Vol. 4,
pp. 715–831. c) C. P. Jasperse, D. P. Curran, and T. L. Fevig,
Chem. Rev., 91, 1237 (1991). d) W. B. Motherwell and D. Crich,
‘‘Free Radical Chain Reactions in Organic Synthesis,’’ Academic,
London (1992). e) ‘‘Radicals in Organic Synthesis,’’ ed by P.
Renaud and M. P. Sibi, Wiley VCH, Weinheim (2001).
72:6 Hz), 37.4, 42.7 (d, JCP ¼ 3:6 Hz), 44.1, 55.4, 61.8, 128.7 (d,
JCP ¼ 11:0 Hz), 128.8 (d, JCP ¼ 11:0 Hz), 130.9 (d, JCP ¼ 9:2
Hz), 131.2 (d, JCP ¼ 8:7 Hz), 131.5 (d, JCP ¼ 2:6 Hz), 131.5 (d,
JCP ¼ 2:8 Hz), 133.6 (d, JCP ¼ 97:7 Hz), 135.1 (d, JCP ¼ 97:7
Hz), 170.6, 170.9, 213.0 (d, JCP ¼ 13:7 Hz); 31P NMR (121.5
MHz, C6D6) ꢃ 29; IR (ZnSe) 505, 540, 699, 748, 1120, 1181
(P=O), 1439 (P–Ph), 1731 (C=O), 2983 cmꢂ1; HRMS (Mþ)
Found: 442.1546, Calcd for C24H27O6P: 442.1545.
2
a) A. G. Fallis and I. M. Brinza, Tetrahedron, 53, 17543
3-Oxo-4-(bis(4-methylphenyl)phosphinoyl)methylcyclopen-
tane-1,1-dicarboxylic Acid Diethyl Ester (21): Colorless oil;
1H NMR (400 MHz, C6D6) ꢃ 0.82 (t, J ¼ 7:2 Hz, 3H), 0.90 (t, J ¼
7:2 Hz, 3H), 1.85–2.12 (m, 1H), 2.00 (d, J ¼ 12:3 Hz, 6H), 2.42
(dd, J ¼ 12:0, 13.7 Hz, 1H), 2.77–2.92 (m, 2H), 3.01–3.11 (m,
2H), 3.47 (ddd, J ¼ 1:8, 8.7, 13.6 Hz, 1H), 3.75–3.89 (m, 2H),
3.93 (q, J ¼ 7:0 Hz, 2H), 6.90–6.99 (m, 4H), 7.70–7.83 (m,
(1997). b) G. K. Friestad, Tetrahedron, 57, 5461 (2001). c) H.
Miyabe, M. Ueda, and T. Naito, Synlett, 2004, 1140. d) S. Kim,
Adv. Synth. Catal., 346, 19 (2004).
3
a) A. L. J. Beckwith and B. P. Hay, J. Am. Chem. Soc., 111,
230 (1989). b) A. L. J. Beckwith and B. P. Hay, J. Am. Chem.
Soc., 111, 2674 (1989). c) R. Walton and B. Fraser-Reid, J. Am.
Chem. Soc., 113, 5791 (1991).
4H); 13C NMR (100 MHz, C6D6) ꢃ 13.7, 13.8, 21.2, 31.0 (d, JCP
¼
4
5
S. Kim and S. Y. Jon, Chem. Commun., 1996, 1335.
a) S. Kiyooka, Y. Kaneko, H. Matsue, M. Hamada, and
72:6 Hz), 37.6, 42.8 (d, JCP ¼ 3:6 Hz), 44.2, 55.5, 61.7, 61.7,
129.4 (d, JCP ¼ 11:8 Hz), 129.6 (d, JCP ¼ 11:9 Hz), 130.7 (d,
JCP ¼ 98:9 Hz), 131.0 (d, JCP ¼ 9:4 Hz), 132.3 (d, JCP ¼ 9:2
Hz), 132.3 (d, JCP ¼ 100:1 Hz), 141.7 (d, JCP ¼ 2:6 Hz), 170.6,
170.9, 213.0 (d, JCP ¼ 13:5 Hz); 31P NMR (121.5 MHz, C6D6)
ꢃ 29; IR (ZnSe) 505, 528, 658, 741, 809, 1118, 1180 (P=O),
1446 (P–Ph), 1731 (C=O), 2982 cmꢂ1; HRMS (Mþ) Found:
470.1859, Calcd for C26H31O6P: 470.1858.
R. Fujiyama, J. Org. Chem., 55, 5562 (1990). b) D. P. Curran
and H. Liu, J. Org. Chem., 56, 3463 (1991). c) D. P. Curran
and M. Palovich, Synlett, 1992, 631. d) D. P. Curran, U.
Diederichsen, and M. Palovich, J. Am. Chem. Soc., 119, 4797
(1997). e) U. Diederichsen and D. P. Curran, J. Organomet.
Chem., 531, 9 (1997).
6
a) M. Sekine, M. Satoh, H. Yamagata, and T. Hata, J. Org.
Typical Procedure for the Preparation of Phosphonofor-
mates and Phosphonothiolformates. All phosphonoformates
(24 and 26) and phosphonothiolformates (25, 27, 36a, and 36b)
were synthesized by the Arbuzov reaction from the corresponding
chloroformate or chlorothiolformate and triethyl phosphite or eth-
yl diphenylphosphinite. The chloroformate and chlorothiolformate
were in situ prepared from the corresponding alcohol or thiol
using diphosgene and triethylamine.
To a solution of homoallyl alcohol 22a (260 mL, 3.0 mmol) in
CH2Cl2 (10 mL), diphosgene (540 mL, 4.5 mmol), and triethyl-
amine (418 mL, 3.0 mmol) were added at 0 ꢁC. After being stirred
for 1 h at room temperature, the solvent and excess diphosgene
were removed under reduced pressure and filtered through a celite
pad using diethyl ether. After the crude chloroformate was dis-
solved in dichloromethaneꢁ(10 mL), triethyl phosphite (510 mL,
3.0 mmol) was added at 0 C. After being stirred for 1 h at room
temperature, the solvent was evaporated under reduced pressure
and the residue was separated by silica-gel column chromatogra-
phy (ethyl acetate/n-hexane 1:1 v/v) to give phosphonoformate
24 (588.1 mg, 83%).
Chem., 45, 4162 (1980). b) M. Sekine, A. Kume, and T. Hata,
Tetrahedron Lett., 22, 3617 (1981). c) M. Sekine, A. Kume, M.
Nakajima, and T. Hata, Chem. Lett., 1981, 1087.
7
a) A. Kajiwara, Y. Konishi, Y. Morishima, W. Schnabel,
K. Kuwata, and M. Kamachi, Macromolecules, 26, 1656 (1993).
b) S. Jockusch, I. V. Koptyug, P. F. McGarry, G. W. Sluggett,
N. J. Turro, and D. M. Watkins, J. Am. Chem. Soc., 119, 11495
(1997). c) M. T. L. Rees, G. T. Russell, M. D. Zammit, and
T. P. Davis, Macromolecules, 31, 1763 (1998).
8 a) S. Kim, C. H. Cho, and C. J. Lim, J. Am. Chem. Soc.,
125, 9574 (2003). b) C. H. Cho and S. Kim, Can. J. Chem.,
(2005), in press.
9
For addition of phosphorus-centered radicals to alkenes,
see for example: a) J. M. Barks, B. C. Gilbert, A. F. Parsons,
and B. Upeandran, Tetrahedron Lett., 42, 3137 (2001). b) J. M.
Barks, B. C. Gilbert, A. F. Parsons, and B. Upeandran, Synlett,
2001, 1719. c) S. R. Piettre, Tetrahedron Lett., 37, 2233 (1996).
d) G. W. Sluggett, P. F. McGarry, I. V. Koptyug, and N. J. Turro,
J. Am. Chem. Soc., 118, 7367 (1996). e) S. R. Piettre, Tetrahedron
Lett., 37, 4707 (1996). f) R. L. Kenney and G. S. Fisher, J. Org.