Heme Carbonyls
A R T I C L E S
hemes,9,14-17 and νC-O is conveniently observed.13 Conse-
quently, CO has been widely used as a probe ligand to detect
vacant coordination sites in reduced heme proteins. Carbon
monoxide is also an interesting biomolecule that is a product
of heme catabolism. Accordingly, the background body burden
of CO is relatively high.18 Since CO has a higher binding
constant than that of dioxygen, this natural CO level is
potentially toxic. Nature has solved the toxicity problem by
designing factors into the heme proteins hemoglobin (Hb) and
myoglobin (Mb) so that their CO affinity is reduced by
approximately 2 orders of magnitude compared to that of
analogous iron(II) porphyrinates.19,20
The origin of the molecular basis of the differences (selectiv-
ity) in the O2 and CO affinities between the heme proteins and
low-molecular-weight hemes has been an intensively studied
problem in bioinorganic chemistry. An early prominent idea
was that the environment of the protein ligand binding pocket
somehow imposes constraints on the Fe-C-O unit but not on
the Fe-O-O unit. There has been much discussion about
possible geometric constraints of the Fe-C-O unit in
MbCO.10,21-25 Although a number of protein crystal structures
have supported a rather bent Fe-C-O unit,26-29 more recent
results do not.30,31 Additionally, polarized IR photoselection
measurements on Mb single crystals and in solution support an
only slightly bent Fe-C-O unit.24,25 The original idea of
geometric constraints imposed by the protein has largely shifted
to investigations of the global (electrostatic) environment near
the CO binding site.23 CO has been widely used to investigate
the specific and global (electrostatic) environment.
frequencies has been attributed to varying conformational, and
subsequently, electrostatic environments in the heme pocket.34-36
A complete understanding of these bands is of interest since
they provide information about the relationship of conforma-
tional substates with functional states of the protein.23-29,69
A
large number of mutation studies have been dedicated to
understanding the multiple-peak phenomenon, differing environ-
(34) Frauenfelder, H.; Sligar, S. G.; Wolynes, P. G. Science 1991, 254, 1598.
Young, R. D.; Frauenfelder, H.; Johnson, J. B.; Lamb, D. C.; Nienhaus,
G. U.; Phillip, R.; Scholl, R. Chem. Phys. 1991, 158, 315.
(35) Alben, J. O.; Beece, D.; Bowne, S. F.; Doster, W.; Eisenstein, L.;
Frauenfelder, H.; Good, D.; McDonald, M. C.; Marden, M. C.; Moh, P.
P.; Reinisch, L.; Reynolds, A. H.; Shyamsunder, E.; Yue, K. T. Proc. Natl.
Acad. Sci. U.S.A. 1982, 79, 3744.
(36) Makinen, M. W.; Houtchens, R. A.; Caughey, W. S. Proc. Natl. Acad.
Sci. U.S.A. 1979, 76, 6042.
(37) Phillips, G. N., Jr.; Teodoro, M. L.; Li, T.; Smith, B.; Olsen, J. S. J. Phys.
Chem. B 1999, 103, 8817.
(38) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.;
Korsakoff, L. J. Org. Chem. 1967, 32, 476.
(39) Adler, A. D.; Longo, F. R.; Kampus, F.; Kim, J. J. Inorg. Nucl. Chem.
1970, 32, 2443.
(40) (a) Fleischer, E. B.; Srivastava, T. S. J. Am. Chem. Soc. 1969, 91, 2403.
(b) Hoffman, A. B.; Collins, D. M.; Day, V. W.; Fleischer, E. B.; Srivastava,
T. S.; Hoard, J. L. J. Am. Chem. Soc. 1972, 94, 3620.
(41) Stolzenberg, A. M.; Strauss, S. H.; Holm, R. H. J. Am. Chem. Soc. 1981,
103, 4763.
(42) Sheldrick, G. M. Program for empirical absorption correction of area
detector data; Universita¨t Go¨ttingen: Go¨ttingen, Germany, 1996.
(43) Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.
(44) Patterson, A. L. Phys. ReV. 1934, 46, 372.
(45) Sheldrick, G. M. SHELXL-97: FORTRAN program for crystal structure
refinement; Universita¨t Go¨ttingen: Go¨ttingen, Germany, 1997.
(46) A reviewer has raised the question of possible problems with correlation
of the parameters in the disordered system. We have carried out three types
of refinement of the disordered imidazole. The first was the “traditional”
refinement with constrained imidazole ring and equivalent Fe-N bond
distances. We also carried out two refinements with unconstrained axial
Fe-N bonds, one with constrained imidazole ring parameters and the second
with free imidazole ring parameters. These two refinements gave essentially
the same Fe-N distances and occupancies of the two rings. We concluded
that there was a real chance that the two ring orientations and differing
Fe-N distances was the correct choice to be made for this particular
problem, which is clearly a difficult one.
The heme proteins myoglobin and hemoglobin have been
among the most studied CO-ligated proteins. In the CO
derivatives of native Mb and Hb, up to four distinct CO
stretching frequencies can be observed.32,33 These bands have
been designated A0, A1, A2, and A3 in Mb. This range of
(47) Salzmann, R.; Ziegler, C. J.; Godbout, N.; McMahon, M. T.; Suslick, K.
S.; Oldfield, E. J. Am. Chem. Soc. 1998, 120, 11323.
(48) Silvernail, N. J.; Noll, B. C.; Scheidt, W. R. unpublished results.
(49) White, D. K.; Cannon, J. B.; Traylor, T. G. J. Am. Chem. Soc. 1979, 101,
2443.
(10) Spiro, T. G.; Zgierski, M. Z.; Kozlowski, P. W. Coord. Chem. ReV. 2001,
219-221, 923.
(50) Collman, J. P.; Brauman, J. I.; Doxsee, K. M.; Halbert T. R.; Suslick, K.
S. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 564.
(51) Little. R. G.; Ibers, J. A. J. Am. Chem. Soc. 1974, 96, 4452.
(52) Kim, K.; Ibers, J. A. J. Am. Chem. Soc. 1991, 113, 6077.
(53) Slebodnick, C.; Duval, M. L.; Ibers, J. A. Inorg. Chem. 1996, 35, 3607.
(54) Hashimoto, T.; Dyer, R. L.; Crossley, M. J.; Baldwin, J. E.; Basolo, F. J.
Am. Chem. Soc. 1982, 104, 2101.
(55) Ricard, L.; Weiss, R.; Momenteau, M. J. Chem. Soc., Chem. Commun.
1986, 818.
(56) Collman, J. P.; Sorrell, T. N. J. Am. Chem. Soc. 1975, 97, 4133.
(57) Salzmann, R.; McMahon, M. T.; Godbout, N.; Sanders, L. K.; Wojdelski,
M.; Oldfield, E. J. Am. Chem. Soc. 1999, 121, 3818.
(58) Slebodnick, C.; Fettinger, J. C.; Peterson, H. B.; Ibers, J. A. J. Am. Chem.
Soc. 1996, 118, 3216.
(59) Kim, K.; Fettinger, J. C.; Sessler, J. L.; Cyr, M.; Hugdahl, J.; Collman, J.
P.; Ibers, J. A. J. Am. Chem. Soc. 1989, 111, 403.
(60) Peng, S. M.; Ibers, J. A. J. Am. Chem. Soc. 1976, 98, 8032.
(61) Buchler, J. W.; Kokisch, W.; Smith, P. D. Struct. Bonding (Berlin) 1978,
34, 79.
(62) Scheidt, W. R.; Haller, K. J.; Fons, M.; Mashiko, T.; Reed, C. A.
Biochemistry 1981, 20, 3653.
(63) Collman, J. P.; Sorrel, T. N.; Dawson, J. H.; Trudell, J. R.; Bunnenberg,
E.; Djerassi, C. Proc. Natl. Acad. Sci. U.S.A. 1976, 73, 6.
(64) Caron, C.; Mitschler, A.; Rive´re, G.; Richard, L.; Schappacher, M.; Weiss,
R. J. Am. Chem. Soc. 1979, 101, 7401.
(65) Momenteau, M.; Scheidt, W. R.; Eigenbrot, C. W.; Reed, C. A. J. Am.
Chem. Soc. 1988, 110, 1207.
(66) Munro, O. Q.; Marques, H. M.; Debrunner, P. G.; Mohanrao, K.; Scheidt,
W. R. J. Am. Chem. Soc. 1995, 117, 935.
(67) Several bis-ligated iron(II) complexes of general formula [Fe(Por)(L)2],
where L is an imidazole derivative, have been structurally characterized.
The values of Fe-N(L) are as follows (a) [Fe(TPP)(1-MeIm)2], 2.014(5)
Å, Hoard, J. L. personal communication to W.R.S.; (b) [Fe(TPP)(1-
VinIm)2], 2.004(2) Å; [Fe(TPP)(1-BzIm)2], 2.017(4), Safo, M. K.; Scheidt,
W. R.; Gupta, G. P. Inorg. Chem. 1990, 29, 626.
(68) Cao, C.; Dahal, S.; Shang, M.; Beatty, A. M.; Hibbs, W.; Schulz, C. E.;
Scheidt, W. R. Inorg. Chem.2003, 42, 5202.
(69) Scheidt, W. R.: Piciulo, P. L. J. Am. Chem. Soc. 1976, 98, 1913.
(11) Kitagawa, T.; Ozaki, Y. Struct. Bonding (Berlin) 1987, 64, 71.
(12) Alben, J. O. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New
York, 1978; Vol. 3, pp 323-345.
(13) Caughey, W. S.; Alben, J. O. Biochemistry 1968, 7, 175.
(14) Li, T.; Quillin, M. L.; Phillips, G. N., Jr.; Olsen, J. S. Biochemistry 1994,
33, 1433.
(15) Rougee, M.; Brault, D. Biochemistry 1975, 14, 4100.
(16) Rougee, M.; Brault, D. Biochem. Biophys. Res. Commun. 1974, 57, 654.
(17) Gibson, Q. H.; Roughton, F. J. Proc. R. Soc., Ser. B, Biol. Sci. 1957, 146,
206.
(18) Landaw, S. A.; Callahan, E. W., Jr.; Schmid, R. J. Clin. InVest. 1970, 49,
914.
(19) Collman, J. P.; Brauman, J. I.; Halbert, T. R.; Suslick, K. S. Proc. Natl.
Acad. Sci. U.S.A. 1976, 73, 3333.
(20) Antonini, E.; Brunori, M. Hemoglobin and Myoglobin in Their Reactions
With Ligands; North-Holland: London, 1971.
(21) Spiro, T. G.; Smulevich, G.; Su, C. Biochemistry 1990, 29, 4497.
(22) (a) Jewsbury, P.; Yamamoto, S.; Minato, T.; Saito, Minoru, S.; Kitagawa,
T. J. Am. Chem. Soc. 1994, 116, 11586. (b) Jewsbury, P.; Yamamoto, S.;
Minato, T.; Saito, Minoru, S.; Kitagawa, T. J. Phys. Chem. 1995, 99, 12677.
(23) Springer, B. A.; Sligar, S. G.; Olsen, J. S.; Phillips, G. N., Jr. Chem. ReV.
1994, 94, 699.
(24) Ivanov, D.; Sage, J. T.; Keim, M.; Powell, J. R.; Asher, S. A.; Champion,
P. M. J. Am. Chem. Soc. 1994, 116, 4139.
(25) Lim, M.; Jackson, T. A.; Anfinrud, P. A. Science. 1995, 269, 962.
(26) Kuriyan, J.; Wilz, S.; Karplus, M.; Petsko, G. A. J. Mol. Biol. 1986, 192,
133.
(27) Teng, T.-Y.; Sˇrajer, V.; Moffat, K. Nat. Struct. Biol. 1994, 1, 701.
(28) Schlichting, I.; Berendzen, J.; Phillips, G. N., Jr.; Sweet, R. M. Nature
1994, 371, 808.
(29) Cheng, X.; Schoenborn, B. P. J. Mol. Biol. 1991, 220, 381.
(30) Vojtechovsky´, J.; Chu, K.; Berendzen, J.; Sweet, R. M.; Schlichting, I.
Biophys. J. 1999, 77, 2153.
(31) Kachalova, G. S.; Popov, A. N.; Bartunik, H. D. Science 1999, 284, 473.
(32) Shimada, H.; Caughey, W. S. J. Biol. Chem. 1982, 257, 11893.
(33) Potter, W. T.; Hazzard, J. H.; Choc, M. G.; Tucker, M. P.; Caughey, W. S.
Biochemistry 1990, 29, 6283.
9
J. AM. CHEM. SOC. VOL. 127, NO. 41, 2005 14423