have been previously reported but are relatively unstable.8,12,25
Similarly our previous attempts to study the 3-(2ꢀ-imidazolyl)-
and the 3-(2ꢀ-quinolyl) systems have been hampered by poor
stability. For example a solution of 0.3 mM 1(R3 = 2-pyridyl)
at room temperature lost 20% of the absorbance at 410 nm
over a 4 day period. Over the same period the corresponding
diisopropyl substituted verdazyls 8a,d show very little (<1%)
signal decay. The other species show similar or greater stability.
Crystalline samples appear to be indefinitely stable in air in a
standard laboratory refrigerator greatly facilitating the synthesis
of coordination compounds.
The phenolic OH in the 2-hydroxy and 4-hydroxyphenyl
substituted verdazyls provides a potential site for further
derivatization or possibly metal coordination. Synthesis of the
4-hydroxyphenyl verdazyl system has been previously hampered
by the very low solubility of the corresponding dimethyl
tetrazane precursor. Similarly, attempts to synthesize the cor-
responding dimethyl tetrazane from salicylaldehyde resulted
only in complex, intractable mixtures. Use of the diisopropyl
bis(hydrazide) circumvents these problems and allows for the
clean synthesis of both tetrazanes and corresponding verdazyls.
We note that remarkably, semiquinone formation does not
appear to compete with the formation of the verdazyl.
All of the free radicals are soluble in non-polar solvents such as
toluene and heptane allowing the measurement of well resolved
ESR spectra. Hyperfine coupling to nitrogen is very similar to
that observed for other verdazyls, however the coupling to the
two isopropyl methine hydrogens is significantly lower than that
observed for the corresponding methyl hydrogens. This suggests
that in the major conformations of the molecule the methine C–
H lies in the plane of the verdazyl ring, minimizing coupling
between it and the p system. A similar phenomenon was
observed with 1,5-dibenzyl substituted verdazyl free radicals7
which, with two hydrogens on a methylene group next to
the verdazyl, show hyperfine coupling intermediate between
the methyl and isopropyl systems (Table 2). No evidence
was seen for the contribution of semiquinone type tautomers
in the hydroxyphenyl substituted species, though the greater
red shift in the electronic spectrum for the 2-hydroxy species
expanding the utility of verdazyl free radicals as spin probes
and ligands for metal ions. In addition it should be possible to
extend the methodology to groups other than isopropyl in the 1
and 5 positions. These possibilities are being further investigated
in our laboratory.
Acknowledgements
This work was supported by the Petroleum Research Fund
(Grant 39923-B1 to DJRB) and the National Science Foun-
dation for purchase of ES-MS instrumentation (Award CHE-
0116181). We would also like to thank Dr Shulamith Schlick
and Dr Andrew Ichimura for help with ESR measurements.
References
1 R. Marchetto, E. M. Cilli, G. N. Jubilut, S. Schreier and C. R. Nakaie,
J. Org. Chem., 2005, 70, 4561.
2 D. A. Shipp, Journal Macromol. Sci. - Polym. Rev., 2005, C45, 171.
3 A. Caneschi, D. Gatteschi, N. Lalioti, R. Sessoli, L. Sorace, V.
Tangoulis and A. Vindigni, Chem.-Eur. J., 2002, 8, 286.
4 J. Omata, T. Ishida, D. Hashizume, F. Iwasaki and T. Nogami, Inorg.
Chem., 2001, 40, 3954.
5 M. T. Lemaire, Pure Appl. Chem., 2004, 76, 277.
6 K. Mukai, T. Yano and K. Ishizu, Tetrahedron Lett., 1981, 22, 4661.
7 F. A. Neugebauer, H. Fischer and R. Siegel, Chem. Ber., 1988, 121,
815.
8 D. J. R. Brook, S. Fornell, J. E. Stevens, B. Noll, T. H. Koch and W.
Eisfeld, Inorg. Chem., 2000, 39, 562.
9 D. J. R. Brook, S. Fornell, B. Noll, G. Yee and T. H. Koch, J. Chem.
Soc., Dalton Trans., 2000, 2019.
10 R. G. Hicks, M. T. Lemaire, L. K. Thompson and T. M. Barclay,
J. Am. Chem. Soc., 2000, 122, 8077.
11 C. L. Barr, P. A. Chase, R. G. Hicks, M. T. Lemaire and C. L. Stevens,
J. Org. Chem., 1999, 64, 8388.
12 D. J. R. Brook and V. Abeyta, J. Chem. Soc., Dalton Trans., 2002,
4219.
13 F. A. Neugebauer, H. Fischer, R. Siegel and C. Kreiger, Chem. Ber.,
1983, 116, 3461.
14 D. R. Duling, J. Magn. Reson., Ser. B, 1994, 104, 105.
15 R. Callabretta, C. Gallina and C. Giordano, Synthesis, 1991, 536.
16 F. A. Neugebauer and H. Fischer, Angew. Chem. Intl. Ed. Engl., 1980,
92, 761.
17 F. A. Neugebauer, H. Fischer and C. Kreiger, J. Chem. Soc., Perkin
Trans. 2, 1993, 535.
18 R. G. Hicks and R. Hooper, Inorg. Chem., 1999, 38, 284.
19 F. A. Neugebauer and R. Siegel, Angew. Chem. Suppl., 1983, 457.
20 F. A. Neugebauer, H. Trischmann and M. Jenne, Angew. Chem., Int.
Ed. Engl., 1967, 6, 362.
(8f, kmax = 560 nm) vs the 4-hydroxy species (8e, kmax
=
520 nm) may be a result of intramolecular hydrogen bonding
between the hydroxy group and the verdazyl nitrogen lone
pair. Such an interaction would hold the two rings in a copla-
nar arrangement increasing the electronic interaction between
them.
21 T. M. Barclay, R. G. Hicks, M. T. Lemaire and L. K. Thompson,
Chem. Commun., 2000, 2141.
¨
22 R. G. Hicks, M. T. Lemaire, L. Ohrstro¨m, R. J. F. L. K. Thompson
and Z. Xu, J. Am. Chem. Soc., 2001, 123, 7154.
23 T. M. Barclay, R. G. Hicks, M. T. Lemaire, L. K. Thompson and
Z. Q. Xu, Chem. Commun., 2002, 1688.
24 R. G. Hicks, M. T. Lemaire, L. Ohrstrom, J. F. Richardson, L. K.
Thompson and Z. Q. Xu, J. Am. Chem. Soc., 2001, 123, 7154.
25 T. M. Barclay, R. G. Hicks, M. T. Lemaire and L. K. Thompson,
Inorg. Chem., 2001, 40, 6521.
Conclusion
Substitution of methyl groups for isopropyl groups in 6-
oxoverdazyl radicals results in species with enhanced stability
and solubility. The synthetic protocol allows the synthesis of
verdazyl free radicals with new substituents in the 3 position,
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 4 2 5 8 – 4 2 6 1
4 2 6 1