Preliminary Studies of New Proteasome Inhibitors
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 21 6739
(16) Dick, L. R.; Cruikshank, A. A.; Destree, A. D.; Grenier, L.;
McCormack, T. A.; Melandri, F. D.; Nunes, S. L.; Palombella,
V. J.; Parent, L. A.; Plamondon, L.; Stein, R. L. Mechanistic
Studies on the Inactivation of the Proteasome by Lactacystin in
Cultured Cells. J. Biol. Chem. 1997, 272, 182-188.
(17) Fenteany, G.; Schreiber, S. L. Lactacystin, Proteasome Function,
and Cell Fate. J. Biol. Chem. 1998, 273 (15), 8545-8548.
(18) Kohno, J.; Koguchi, Y.; Nishio, M.; Nakao, K.; Kuroda, M.;
Shimizu, R.; Ohnuki, T.; Komatsubara, S. Structures of TMC-
95A-D: Novel Proteasome Inhibitors from Apiospora montagnei
Sacc. TC 1093. J. Org. Chem. 2000, 65, 990-995.
(19) Vinitsky, A.; Michaud, C.; Powers, J. C.; Orlowski, M. Inhibition
of the Chymotrypsin-like Activity of the Pituitary Multicatalytic
Proteinase Complex. Biochemistry 1992, 31, 9421-9428.
(20) Wilk, S.; Figueiredo-Preira, M. E. Synthetic Inhibitors of the
Multicatalytic Proteinase Complex (Proteasome). Enzyme Pro-
teine 1993, 47, 306-313.
(21) Vinitsky, A.; Cardozo, C.; Sepp-Lorenzino, L.; Michaud, C.;
Orlowski, M. Inhibition of the Proteolytic Activity of the Mul-
ticatalytic Proteinase Complex (Proteasome) by Substrate-
related Peptidyl Aldehydes. J. Biol. Chem. 1994, 269, 29860-
29866.
10 µM 19, 25, and 28, and MG132 or epoxomicin (Affiniti) as
controls, in a 50 mM Tris-HCl (pH ) 8) buffer. 100 µM
fluorogenic proteasomes substrates Suc-LLVY-AMC (Affiniti)
and Boc-LRR-AMC (Affiniti) or 200 µM Z-LLE-AMC (Calbio-
chem) in DMSO were then added to assay solutions, and
samples were incubated for 1 h at 37 °C in a 96 well black
microtiter plate. The final reaction volume was 100 µL. The
final DMSO concentration was 1%. The reaction was stopped
by adding 100 µL of 10% SDS, and fluorescence was deter-
mined by measuring the release of AMC using a fluorescence
microplate reader at 360/460 nm.
Flow Cytometric Analysis. M4Beu cells (human mela-
noma cells) or normal melanocytes (MshL1) were incubated
with 10 mM compound 19 or MG132 for 24 h. The flow
cytometric analysis of cell DNA content was performed using
an Epics XL (Coulter, Hialeah, FL) after propidium iodide
labeling of cells. Fluorescence attributable to PI was deter-
mined using excitation by an argon laser, operating at 488 nm
and a power output of 15 mW. For each histogram, the cell
distribution was calculated using the Multicycle software
program (Phoenix, Flow Systems, San Diego, CA) and ex-
pressed by the ratio of compound 19/control or MG132/control
in normal melanocytes or M4Beu cells.
(22) Cardozo, C.; Vinitsky, A.; Michaud, C.; Orlowski, M. Evidence
That the Nature of Amino Acid Residues in the P3 Position
Directs Substrates to Distinct Catalytic Sites of the Pituitary
Multicatalytic Proteinase Complex (Proteasome). Biochemistry
1994, 33 (21), 6483-6489.
(23) Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A. A.; Dick, L.
R.; Grenier, L.; Klunder, J. M.; Ma, Y.-T.; Plamondon, L.; Stein,
R. L. Potent and Selective Inhibitors of the Proteasome: Dipep-
tidyl Boronic Acids. Bioorg. Med. Chem. Lett. 1998, 8, 333-338
(24) Lightcap, E. S.; McCormack, T. A.; Pien, C. S.; Chau, V.; Adams,
J.; Elliott, P. J. Proteasome Inhibition Measurements: Clinical
Application. Clin. Chem. 2000, 46 (5), 673-683.
(25) Bogyo, M.; McMaster, J. S.; Gaczynska, M.; Tortorella, D.;
Goldberg, A. L.; Ploegh, H. Covalent Modification of the Active
Site Threonine of Proteosomal â-subunits and the Escherichia
coli Homologue HsIV by a New Class of Inhibitors. Proc. Natl.
Acad. Sci. U.S.A. 1997, 94 (13), 6629-6634.
(26) Bogyo, M.; Shin, S.; McMaster, J. S.; Ploegh, H. L. Substrate
Binding and Sequence Preference of the Proteasome Revealed
by Active-site-directed Affinity Probes. Chem. Biol. 1998, 5 (6),
307-320.
(27) Elofsson, M.; Splittgerber, U.; Myung, J.; Mohan, R.; Crews, C.
M. Towards Subunit-Specific Proteasome Inhibitors: Synthesis
and Evaluation of Peptide R′,â′-epoxycetones. Chem. Biol. 1999,
6 (11), 811-822.
(28) Lynas, J. F.; Harriott, P.; Healy, A.; McKervey, M. A.; Walker,
B. Inhibitors of the Chymotrypsin-like Activity of Proteasome
Based on di- and tri-peptidyl R-keto aldehydes (glyoxals). Bioorg.
Med. Chem. Lett. 1998, 8, 373-378.
(29) Lum, R. T.; Nelson, M. G.; Joly, A.; Horsma, A. G.; Lee, G.;
Meyer, S. M.; Wick, M. M.; Schow, S. R. Selective Inhibition of
the Chymotrypsin-like Activity of the 20S Proteasome by
5-methoxy-1-indanone Dipeptide Benzamides. Bioorg. Med.
Chem. Lett. 1998, 8, 209-214.
(30) Loidl, G.; Groll, M.; Musiol, H. J.; Huber, R.; Moroder, L.
Bivalency as a Principle for Proteasome Inhibition. Proc. Natl.
Acad. Sci. U.S.A. 1999, 96, 5418-5422.
(31) Loidl, G.; Groll, M.; Musiol, H.-J.; Ditzel, L.; Huber, R.; Moroder,
L. Bifunctional Inhibitors of the Trypsin-like Activity of Eu-
karyotic Proteasomes. Chem. Biol. 1999, 6 (4), 197-204.
(32) Lo¨we, J.; Stock, D.; Jap, B.; Zwickl, P.; Baumeister, W.; Hubert,
R. Crystal Structure of the 20S Proteasome from the Archaeon
T. acidophilum at 3.4 Å Resolution. Science 1995, 268 (5210),
533-539.
(33) Groll, M.; Ditzel, L.; Lo¨we, J.; Stock, D.; Bochtler, M.; Bartunik,
H. D.; Huber, R. Structure of 20S Proteasome from Yeast at 2.4
Å Resolution. Nature 1997, 386 (6624), 463-471.
(34) Goldberg, A. L.; Akopian, T. N.; Kisselev, A. F.; Lee, A. H.;
Rohrwild, M. New Insights into the Mechanisms and Importance
of the Proteasome in Intracellular Protein Degradation. Biol.
Chem. 1997, 378, 131-140.
(35) Ditzel, L.; Stock, D.; Lo¨we, J. Structural Investigation of
Proteasome Inhibition. Biol. Chem. 1997, 378, 239-247.
(36) Groll, M.; Heinemeyer, W.; Ja¨ger, S.; Ullrich, T.; Bochtler, M.;
Wolf, D. H.; Huber, R. The Catalytic Sites of 20S Proteasomes
and their Role in Subunit Maturation: A Mutational and
Crystallographic Study. Proc. Natl. Acad. Sci. U.S.A. 1999, 96,
10976-10983.
(37) Teicher, B. A.; Ara, G.; Herbst, R.; Palombella, V. J.; Adams, J.
The Proteasome Inhibitor PS-341 in Cancer Therapy. Clin.
Cancer Res. 1999, 5, 2638-2645.
(38) Adams, J. Development of the Proteasome Inhibitor PS-341.
Oncologist 2002, 7, 9-16.
(39) Stein, R. L.; Ma, Y.-T.; Brand, S. Inhibitors of The 26S Proteolytic
Complex And The 20S Proteasome Contained Therein. U.S.
Patent 5,693,617, December 2, 1997.
Acknowledgment. We thank Dr. M. Borel for the
proton and carbon magnetic resonance spectra per-
formed on the Bruker DRX 500. We also thank M. Bayle
for the synthesis of several intermediates. We are
grateful for many helpful discussions throughout the
course of this work with Dr. J. Helfenbein and Dr. M.-
F. Moreau.
Supporting Information Available: Main fragmenta-
tions of [M + H]+ ions derived from electrospray of Weinreb
amides 12, 15, 18, 21, 24, and 27 and spectroscopic data. This
information is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Coux, O.; Tanaka, K.; Goldberg, A. L. Structure and Functions
of the 20S and 26S Proteasomes. Annu. Rev. Biochem. 1996, 65,
801-847.
(2) Goldberg, A. L.; Rock, K. L. Proteolysis, Proteasomes and
Antigen Presentation. Nature 1992, 357, 375-378.
(3) Groettrup, G.; Schmidtke, G. Selective Proteasome Inhibitors:
Modulators of Antigen Presentation? DDT 1999, 4 (2), 63-71.
(4) Elliott, P. J.; Zollner T. M.; Boehncke, W.-H. Proteasome
Inhibition: a New Anti-inflammatory Strategy. J. Mol. Med.
2003, 81, 235-245.
(5) Price, S. R. Increased Transcription of Ubiquitin-proteasome
System Components: Molecular Responses Associated with
Muscle Atrophy. Int. J. Biochem. Cell Biol. 2003, 35, 617-628.
(6) Goellner, G. M.; Rechsteiner, M. Are Hungtington’s and Poly-
glutamine-based Ataxias Proteasome Storage Diseases? Int. J.
Biochem. Cell Biol. 2003, 35, 562-571.
(7) Naidoo, N.; Song, W.; Hunter-Ensor, M.; Sehgal, A. A Role for
the Proteasome in the Light Response of the Timeless Clock
Protein. Science 1999, 285, 1737-1741.
(8) Hilt, W.; Wolf, D. H. Proteasomes: Destruction as a Programme.
Trends Biochem. Sci. 1996, 21, 96-102.
(9) Myung, J.; Kim, K. B.; Crews, C. M. The Ubiquitin-Proteasome
Pathway and Proteasome Inhibitors. Med. Res. Rev. 2001, 21
(4), 245-273.
(10) Adams, J.; Palombella, V. J.; Sausville, E. A.; Johson, J.; Destree,
A.; Lazarus, D. D.; Maas, J.; Pien, C. S.; Prakash, S.; Elliott, P.
J. Proteasome Inhibitors: a Novel Class of Potent and Effective
Antitumor Agents. Cancer Res. 1999, 59, 2615-2622.
(11) Kisselev, A. F.; Goldberg, A. L. Proteasome Inhibitors: from
Research Tools to Drug Candidates. Chem. Biol. 2001, 8, 739-
758.
(12) Gillessen, S.; Groettrup, M.; Cerny, T. The proteasome, a New
Target for Cancer Therapy. Onkologie 2002, 25, 534-539.
(13) Adams, J. Potential for Proteasome Inhibition in the Treatment
of Cancer. Drug Discovery Today 2003, 8 (7), 307-315.
(14) Los, M.; Burek, C. J.; Stroh, C.; Benediyk, K., Hug, H.; Mack-
iewicz, A. Anticancer Drugs of Tomorrow: Apoptotic Pathways
as Targets for Drug Design. Drug Discovery Today 2003, 8 (2),
67-77.
(15) Masse, C. E.; Morgan, A. J., Adams, J.; Panek, J. S. Syntheses
and Biological Evaluation of (+)-Lactacystin and Analogues. Eur.
J. Org. Chem. 2000, 2513-2528.