lenges in the isolation and characterization of HS se-
quences.8,9
phthalimide group with an azide by Cu-mediated diazo
transfer onto the free amine,16 and protection of the C3
hydroxyl as a levulinate (Lev) ester (see Scheme 1).
The discovery of biologically active ligands may be
accelerated by the synthesis and screening of HS-like
oligosaccharides with variable sulfation profiles. Most
synthetic efforts related to HS have been focused on the
oligomerization of protected carbohydrate units with pre-
designated sulfation sites,10,11 whereas less attention has been
paid toward orthogonal protecting group systems which can
be used to produce diverse sulfation patterns.12 Both ap-
proaches have merit and are in fact quite complementary,
but the challenge of the latter increases rapidly with the
number of differentiable sites. To date, a focused library of
eight chondroitin sulfate disaccharides has been produced,13
and a heparan disaccharide with up to four orthogonal
protecting groups has been recently reported.12 These en-
couraging achievements set the stage for developing sulfation
patterns of greater complexity.
Scheme 1. Synthesis of Orthogonally Protected Heparan
Disaccharide 5a
Here we demonstrate an orthogonal sulfation strategy using
a heparan disaccharide unit with six different protecting
groups and a set of cleavage conditions that are also
compatible with neighboring O-sulfate esters. The chemose-
lectivity of these conditions is demonstrated by preparing a
subset of six disaccharide monosulfates, followed by depro-
tection of a neighboring hydroxyl group or conversion of
azide to NHAc. The synthetic strategy described here is
intended to enable the generation of sulfated oligosaccharide
libraries derived from a common intermediate. This includes
access to sulfation patterns not observed in isolated HS
fragments, such as those featuring a 3-O-sulfate on the uronic
acid moiety.7
Thioglycoside 1 (available in multigram quantities from
D-glucosamine)14 was converted to orthogonally protected
derivative 3 by reductive cleavage of the p-anisylidene acetal
to the 4-O-p-methoxybenzyl (PMB) ether using borane and
Bu2BOTf,15 followed by protection of the C6 hydroxyl as a
tert-butyldiphenylsilyl (TBDPS) ether, replacement of the
a Selected abbreviations: BSP ) benzenesulfinylpiperidine;
DTBMP ) di-t-Bu-4-methylpyridine; en ) ethylenediamine; im
) imidazole; PMP ) p-methoxyphenyl.
(8) Spillmann, D.; Witt, D.; Lindahl, U. J. Biol. Chem. 1998, 273,
15487-15493.
Methyl D-glucoside derivative 2 was transformed into a
bicyclic lactone via reductive cleavage to the 4-O-PMB ether,
followed by tetramethyl-1-piperidineoxy (TEMPO)-mediated
oxidation17 and lactonization to the [3.2.1] isomer of 3,6-
glucuronolactone.18 Removal of the PMB group by ceric
ammonium nitrate (CAN) produced glycosyl acceptor 4,
which was coupled with thioglycoside 3 using benzenesulfi-
(9) (a) Venkataraman, G.; Shriver, Z.; Raman, R.; Sasisekharan, R.
Science 1999, 286, 537-542. (b) Keiser, N.; Venkataraman, G.; Shriver,
Z.; Sasisekharan, R. Nature Med. 2001, 7, 123-128. (c) Liu, J.; Shriver,
Z.; Pope, R. M.; Throp, S. C.; Duncan, M. B.; Copeland, R. J.; Raska, C.
S.; Yoshida, K.; Eisenberg, R. J.; Cohen, G.; Linhardt, R. J.; Sasisekharan,
R. J. Biol. Chem. 2002, 277, 33456-33467.
(10) For a recent review, see: Poletti, L.; Lay, L. Eur. J. Org. Chem.
2003, 2999-3024.
(11) Recent examples of HS syntheses: (a) Tabeur, C.; Mallet, J. M.;
Bono, F.; Herbert, J. M.; Petitou, M.; Sinay, P. Bioorg. Med. Chem. 1999,
7, 2003-2012. (b) Ojeda, R.; de Paz, J. L.; Mart´ın-Lomas, M. Chem.
Commun. 2003, 2486-2487. (c) Ojeda, R.; Terenti, O.; de Paz, J.-L.; Mart´ın-
Lomas, M. Glycoconjugate J. 2004, 21, 179-195. (d) Lubineau, A.; Lortat-
Jacob, H.; Gavard, O.; Sarrazin, S.; Bonnaffe´, D. Chem. Eur. J. 2004, 10,
4265-4282. (e) Code´e, J. D. C.; Stubba, B.; Schiattarella, M.; Overkleeft,
H. S.; van Boeckel, C. A. A.; van Boom, J. H.; van der Marel, G. A. J.
Am. Chem. Soc. 2005, 127, 3767-3773.
(15) (a) Jiang, L.; Chan, T.-H. Tetrahedron Lett. 1998, 39, 355-358.
(b) Herna´ndez-Torres, J. M.; Achkar, J.; Wei, A. J. Org. Chem. 2004, 69,
7206-7211.
(16) (a) Alper, P. B.; Hung, S.-C.; Wong, C.-H. Tetrahedron Lett. 1996,
37, 6029-6033. (b) Liew, S.-T.; Wei, A. Carbohydr. Res. 2002, 337, 1319-
1324.
(17) (a) Boulineau, F. P.; Wei, A. Org. Lett. 2002, 4, 2281-2283. (b)
Boulineau, F. P.; Wei, A. Org. Lett. 2004, 6, 119-121.
(18) (a) Kornilov, A. V.; Sherman, A. A.; Kononov, L. O.; Shashkov,
A. S.; Nifantiev, N. E. Carbohydr. Res. 2000, 329, 717-730. (b) Kornilov,
A. V.; Sukhova, E. V.; Nifantiev, N. E. Carbohydr. Res. 2001, 336, 309-
313.
(12) Recent examples of orthogonally protected HS fragments: (a) Haller,
M. F.; Boons, G.-J. Eur. J. Org. Chem. 2002, 2033-2038. (b) Prabhu, A.;
Venot, A.; Boons, G.-J. Org. Lett. 2003, 5, 4975-4978.
(13) Lubineau, A.; Bonnaffe´, D. Eur. J. Org. Chem. 1999, 2523, 3-2532.
(14) Herna´ndez-Torres, J. M.; Liew, S.-T.; Achkar, J.; Wei, A. Synthesis
2002, 487-490.
5096
Org. Lett., Vol. 7, No. 22, 2005