Page 5 of 7
ACS Catalysis
Screening by Affinity LC. Eur. J. Org. Chem. 2009, 2009, 1796-1805;
Angew. Chem. Int. Ed. 2007, 46, 7491-7494; (t) Leonori, D.; Aggarwal,
V. K. Lithiation-Borylation Methodology and Its Application in
Synthesis. Acc. Chem. Res. 2014, 47, 3174-3183.
5. Montesinos-Magraner, M.; Costantini, M.; Ramírez-Contreras,
R.; Muratore, M. E.; Johansson, M. J.; Mendoza, A., General
Cyclopropane Assembly by Enantioselective Transfer of a Redox-
Active Carbene to Aliphatic Olefins. Angew. Chem. Int. Ed. 2019, 58,
5930–5935.
(e) Virta, P.; Leppänen, M.; Lönnberg, H., Pentaerythrityltetramine
Scaffolds for Solid-Phase Combinatorial Chemistry. J. Org. Chem.
2004, 69, 2008-2016.
2. Shenvi, R. A.; O’Malley, D. P.; Baran, P. S., Chemoselectivity:
The Mother of Invention in Total Synthesis. Acc. Chem. Res. 2009, 42,
530-541.
3. (a) Patterson, D. M.; Prescher, J. A., Orthogonal Bioorthogonal
Chemistries. Curr. Op. Chem. Biol. 2015, 28, 141-149; (b) Rashidian,
M.; Kumarapperuma, S. C.; Gabrielse, K.; Fegan, A.; Wagner, C. R.;
Distefano, M. D., Simultaneous Dual Protein Labeling Using a
Triorthogonal Reagent. J. Am. Chem. Soc. 2013, 135, 16388-16396; (c)
Taylor, M. T.; Nelson, J. E.; Suero, M. G.; Gaunt, M. J., A Protein
Functionalization Platform based on Selective Reactions at Methionine
Residues. Nature 2018, 562, 563-568.
1
2
3
4
5
6
7
8
6. (a) de Meijere, A.; Kozhushkov, S. I.; Schill, H., Three-
Membered-Ring-Based Molecular Architectures. Chem. Rev. 2006,
106, 4926-4996; (b) Davies, I. W.; Gerena, L.; Castonguay, L.;
Senanayake, C. H.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J., The
Influence of Ligand Bite Angle on the Enantioselectivity of Copper(II)-
Catalysed Diels–Alder Reactions. Chem. Commun. 1996, 1996, 1753-
1754; (c) Talele, T. T., The “Cyclopropyl Fragment” is a Versatile
Player that Frequently Appears in Preclinical/Clinical Drug Molecules.
J. Med. Chem. 2016, 59, 8712-8756; (d) Chen, D. Y. K.; Pouwer, R.
H.; Richard, J.-A., Recent Advances in the Total Synthesis of
Cyclopropane-Containing Natural Products. Chem. Soc. Rev. 2012, 41,
4631-4642; (e) Ebner, C.; Carreira, E. M., Cyclopropanation Strategies
in Recent Total Syntheses. Chem. Rev. 2017, 117, 11651-11679; (f)
Büschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K. B.;
Overman, L. E., Synthetic Strategies toward Natural Products
Containing Contiguous Stereogenic Quaternary Carbon Atoms.
Angew. Chem. Int. Ed. 2016, 55, 4156-4186; (g) Feng, J.; Holmes, M.;
Krische, M. J., Acyclic Quaternary Carbon Stereocenters via
Enantioselective Transition Metal Catalysis. Chem. Rev. 2017, 117,
12564-12580; (h) Liu, Y.; Han, S.-J.; Liu, W.-B.; Stoltz, B. M.,
Catalytic Enantioselective Construction of Quaternary Stereocenters:
Assembly of Key Building Blocks for the Synthesis of Biologically
Active Molecules. Acc. Chem. Res. 2015, 48, 740-751; (i) Quasdorf, K.
W.; Overman, L. E., Catalytic Enantioselective Synthesis of
Quaternary Carbon Stereocentres. Nature 2014, 516, 181-191; (j) Dian,
L.; Marek, I., Asymmetric Preparation of Polysubstituted
Cyclopropanes Based on Direct Functionalization of Achiral Three-
Membered Carbocycles. Chem. Rev. 2018, 118, 8415-8434; (k) Hu, L.;
Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, J. X.; Yu, J.-Q., PdII-Catalyzed
Enantioselective C(sp3)−H Activation/Cross-Coupling Reactions of
Free Carboxylic Acids. Angew. Chem. Int. Ed. 2019, 58, 2134-2138; (l)
Parra, A.; Amenós, L.; Guisán-Ceinos, M.; López, A.; García Ruano,
J. L.; Tortosa, M., Copper-Catalyzed Diastereo- and Enantioselective
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
4. (a) Wang, Z.; Herraiz, A. G.; del Hoyo, A. M.; Suero, M. G.,
Generating Carbyne Equivalents with Photoredox Catalysis. Nature
2018, 554, 86-91; (b) Fu, J. T.; Ren, Z.; Bacsa, J.; Musaev, D. G.;
Davies, H. M. L., Desymmetrization of Cyclohexanes by Site- and
Stereoselective C-H Functionalization. Nature 2018, 564, 395-399; (c)
He, J.; Hamann, L. G.; Davies, H. M. L.; Beckwith, R. E. J., Late-Stage
C-H Functionalization of Complex Alkaloids and Drug Molecules via
Intermolecular Rhodium-Carbenoid Insertion. Nat. Commun. 2015, 6,
1-9; (d) Liao, K. B.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H.
M. L., Site-Selective and Stereoselective Functionalization of
Unactivated C-H Bonds. Nature 2016, 533, 230-234; (e) Liao, K. B.;
Pickel, T. C.; Oyarskikh, V. B.; Acsa, J. B.; Usaev, D. G. M.; Davies,
H. M. L., Site-Selective and Stereoselective Functionalization of Non-
Activated Tertiary C-H Bonds. Nature 2017, 551, 609-613; (f) Liao, K.
B.; Yang, Y. F.; Lie, Y. Z.; Sanders, J. N.; Houk, K. N.; Musaev, D.
G.; Davies, H. M. L., Design of Catalysts for Site-Selective and
Enantioselective Functionalization of Non-Activated Primary C-H
Bonds. Nat. Chem. 2018, 10, 1048-1055; (g) Liu, W. B.; Ren, Z.;
Bosse, A. T.; Liao, K. B.; Goldstein, E. L.; Bacsa, J.; Musaev, D. G.;
Stoltz, B. M.; Davies, H. M. L., Catalyst-Controlled Selective
Functionalization of Unactivated C-H Bonds in the Presence of
Electronically Activated C-H Bonds. J. Am. Chem. Soc. 2018, 140,
12247-12255; (h) Qin, C. M.; Davies, H. M. L., Role of Sterically
Demanding Chiral Dirhodium Catalysts in Site-Selective C-H
Functionalization of Activated Primary C-H Bonds. J. Am. Chem. Soc.
2014, 136, 9792-9796; (i) Harris, M. R.; Wisniewska, H. M.; Jiao, W.;
Wang, X.; Bradow, J. N., A Modular Approach to the Synthesis of gem-
Disubstituted Cyclopropanes. Org. Lett. 2018, 20, 2867-2871; (j)
Matteson, D. S.; Sadhu, K. M.; Peterson, M. L., 99% Chirally Selective
Synthesis via Pinanediol Boronic Esters: Insect Pheromones, Diols,
and an Amino Alcohol. J. Am. Chem. Soc. 1986, 108, 810-819; (k)
Matteson, D. S., Asymmetric Synthesis with Boronic Esters. Acc.
Chem. Res. 1988, 21, 294-300; (l) Schnaars, C.; Hennum, M.; Bonge-
Hansen, T., Nucleophilic Halogenations of Diazo Compounds, a
Complementary Principle for the Synthesis of Halodiazo Compounds:
Experimental and Theoretical Studies. J. Org. Chem. 2013, 78, 7488-
7497; (m) Beaulieu, L.-P. B.; Zimmer, L. E.; Gagnon, A.; Charette, A.
B., Highly Enantioselective Synthesis of 1,2,3-Substituted
Cyclopropanes by Using α-Iodo- and α-Chloromethylzinc Carbenoids.
Chem. Eur. J. 2012, 18, 14784-14791; (n) Zimmer, L. E.; Charette, A.
B., Enantioselective Synthesis of 1,2,3-Trisubstituted Cyclopropanes
Using gem-Dizinc Reagents. J. Am. Chem. Soc. 2009, 131, 15624-
15626; (o) Joannou, M. V.; Moyer, B. S.; Goldfogel, M. J.; Meek, S.
J., Silver(I)-Catalyzed Diastereoselective Synthesis of anti-1,2-
Hydroxyboronates. Angew. Chem. Int. Ed. 2015, 54, 14141-14145; (p)
Murray, S. A.; Green, J. C.; Tailor, S. B.; Meek, S. J., Enantio- and
Diastereoselective 1,2-Additions to α-Ketoesters with Diborylmethane
and Substituted 1,1-Diborylalkanes. Angew. Chem. Int. Ed. 2016, 55,
9065-9069; (q) Murray, S. A.; Liang, M. Z.; Meek, S. J.,
Desymmetrization
of
Cyclopropenes:
Synthesis
of
Cyclopropylboronates. J. Am. Chem. Soc. 2014, 136, 15833-15836;
(m) Rubina, M.; Rubin, M.; Gevorgyan, V., Catalytic Enantioselective
Hydroboration of Cyclopropenes. J. Am. Chem. Soc. 2003, 125, 7198-
7199.
7. (a) Yu, Z.; Qiu, H.; Liu, L.; Zhang, J., Gold-Catalyzed
Construction of Two Adjacent Quaternary Stereocenters via Sequential
C-H Functionalization and Aldol Annulation. Chem. Commun. 2016,
52, 2257-2260; (b) Jia, S.; Xing, D.; Zhang, D.; Hu, W., Catalytic
Asymmetric Functionalization of Aromatic C-H Bonds by
Electrophilic Trapping of Metal-Carbene-Induced Zwitterionic
Intermediates. Angew. Chem. Int. Ed. 2014, 53, 13098-13101; (c) Qiu,
H.; Li, M.; Jiang, L. Q.; Lv, F. P.; Zan, L.; Zhai, C. W.; Doyle, M. P.;
Hu, W. H., Highly Enantioselective Trapping of Zwitterionic
Intermediates by Imines. Nat. Chem. 2012, 4, 733-8; (d) Gutierrez-
Bonet, A.; Julia-Hernandez, F.; de Luis, B.; Martin, R., Pd-Catalyzed
C(sp(3))-H Functionalization/Carbenoid Insertion: All-Carbon
Quaternary Centers via Multiple C-C Bond Formation. J. Am. Chem.
Soc. 2016, 138, 6384-6387; (e) Xia, Y.; Feng, S.; Liu, Z.; Zhang, Y.;
Wang, J., Rhodium(I)-Catalyzed Sequential C(sp)-C(sp3) and C(sp3)-
C(sp3) Bond Formation through Migratory Carbene Insertion. Angew.
Chem. Int. Ed. 2015, 54, 7891-7894; (f) Chen, Z. S.; Duan, X. H.; Zhou,
P. X.; Ali, S.; Luo, J. Y.; Liang, Y. M., Palladium-Catalyzed Divergent
Reactions of Alpha-Diazocarbonyl Compounds with Allylic Esters:
Construction of Quaternary Carbon Centers. Angew. Chem. Int. Ed.
2012, 51, 1370-1374; (g) Xia, Y.; Liu, Z.; Liu, Z.; Ge, R.; Ye, F.;
Hossain, M.; Zhang, Y.; Wang, J., Formal Carbene Insertion into C-C
Bond: Rh(I)-catalyzed Reaction of Benzocyclobutenols with
Diazoesters. J. Am. Chem. Soc. 2014, 136, 3013-3015; (h) Nakayama,
H.; Harada, S.; Kono, M.; Nemoto, T., Chemoselective Asymmetric
Stereoselective
Tandem
Bis-Electrophile
Couplings
of
Diborylmethane. J. Am. Chem. Soc. 2017, 139, 14061-14064; (r) Sun,
C.; Potter, B.; Morken, J. P., A Catalytic Enantiotopic-Group-Selective
Suzuki Reaction for the Construction of Chiral Organoboronates. J.
Am. Chem. Soc. 2014, 136, 6534-6537; (s) Stymiest, J. L.; Dutheuil,
G.; Mahmood, A.; Aggarwal, V. K. Lithiated Carbamates: Chiral
Carbenoids for Iterative Homologation of Boranes and Boronic Esters.
ACS Paragon Plus Environment