Published on Web 09/22/2005
Catalysis of Enantioselective [2+1]-Cycloaddition Reactions
of Ethyl Diazoacetate and Terminal Acetylenes Using
Mixed-Ligand Complexes of the Series Rh2(RCO2)n (L*4-n).
Stereochemical Heuristics for Ligand Exchange and Catalyst
Synthesis
Yan Lou, Travis P. Remarchuk, and E. J. Corey*
Contribution from the Department of Chemistry and Chemical Biology,
HarVard UniVersity, Cambridge, Massachusetts 02138
Received April 7, 2005; E-mail: corey@chemistry.harvard.edu
Abstract: This paper describes the synthesis of mixed Rh2(II) complexes containing bridging acetate and
R,R-diphenyl-N-triflylimidazolidinone (DPTI) ligands (1, 2, and 9-19), and their function as enantioselective
catalysts for the conversion of ethyl diazoacetate and terminal acetylenes to chiral cyclopropenes. Of these
catalysts, 1 and 10 functioned with the highest enantioselectivity, in accord with a mechanistic model in
which one of the ligand bridges is broken in the intermediate Rh-carbene complex. The synthetic results
allow conclusions with regard to kinetically and thermodynamically favored pathways for the synthesis of
mixed acetate-DPTI complexes. A new C2-symmetric complex having only two anti-DTBTI bridges (23) is
shown to be a highly effective chiral catalyst, as expected from the model.
The use of Rh2(II) salts, e.g., Rh2(OAc)4, as catalysts for C-C
bond formation in [2+1]-cycloaddition reactions of olefins (or
acetylenes) and R-diazo carbonyl compounds or in ring-forming
C-H insertion reactions of the latter represents an important
synthetic tool,1 made even more powerful by the development
of highly enantioselective versions using chiral Rh(II) catalysts.
The most effective of these chiral catalysts thus far have been
Rh2-bridged dimers having four identical chiral bridging ligands,
especially the ligands of McKervey/Davies (N-arylsulfonyl-
proline),1i,2 Doyle (chiral 2-oxopyrrolidines),1a,b,3 and Hashimoto/
Ikegami (N-phthaloyl-tert-butylglycine).1e,4 The rate-limiting
step for these catalytic reactions is the reaction of the R-diazo
carbonyl with the Rh(II) catalyst, forming N2 and a Rh(II)
carbenoid complex.5 The detailed nature of that complex and
the subsequent product-forming step, which are both crucial to
the understanding of the mechanistic basis for enantioselectivity,
have been obscure, although the assumption that the carbenoid
complex retains the framework of Rh2L4 has commonly been
made for symmetrically bridged catalysts.1,6 This assumption
has also been used in the latest computational studies of the
product-forming step.7,8 We recently have described a different
mechanistic model of the product-forming step with unsym-
metrically bridged catalysts which is based on the idea that the
Rh-carbenoid complex contains only three of the original ligand
bridges of the starting Rh(II) catalyst and that the reaction
proceeds by a [2+2]-cycloaddition of the CdC or CtC linkage
to Rh-carbenoid π-linkage.9,10 On the basis of this hypothesis,
we synthesized the chiral Rh(II) complex 1,10,11 having one
acetate and three R,R-diphenyl-N-triflylimidazolidinone (DPTI)
ligands, and compared it to the closely related complex with
(5) (a) Pirrung, M. C.; Morehead, A. T., Jr. J. Am. Chem. Soc. 1994, 116,
8991-9000. (b) Pirrung, M. C.; Morehead, A. T., Jr. J. Am. Chem. Soc.
1996, 118, 8162-8163. (c) Pirrung, M. C.; Liu, H.; Morehead, A. T., Jr.
J. Am. Chem. Soc. 2002, 124, 1014-1023. (d) Alonso, M. E.; Garc´ıa, M.
del C. Tetrahedron 1989, 45, 69-76.
(6) (a) Sheehan, S. M.; Padwa, A.; Snyder, J. P. Tetrahedron Lett. 1998, 39,
949-952. (b) Snyder, J. P.; Padwa, A.; Stengel, T.; Arduengo, A. J., III;
Jockisch, A.; Kim, H.-J. J. Am. Chem. Soc. 2001, 123, 11318-11319.
(7) (a) Nakamura, E.; Yoshikai, N.; Yamanaka, M. J. Am. Chem. Soc. 2002,
124, 7181-7192. (b) Yoshikai, N.; Nakamura, E. AdV. Synth. Catal. 2003,
345, 1159-1171.
(8) Nowlan, D. T., III; Gregg, T. M.; Davies, H. M. L.; Singleton, D. A. J.
Am. Chem. Soc. 2003, 125, 15902-15911. These workers have also
measured 12C/13C kinetic isotope effects for olefin cyclopropanation.
(9) For other studies of the conversion of acetylenes to cyclopropenes, see:
(a) Petiniot, N.; Anciaux, A. J.; Noels, A.; Hubert, A. J.; Teyssie, P.
Tetrahedron Lett. 1978, 1239-1242. (b) Doyle, M.; Protopopova, M.;
Mu¨ller, P.; Ene, D.; Shapiro, E. J. Am. Chem. Soc. 1994, 116, 8492-8498.
(c) Protopopova, M.; Doyle, M.; Mu¨ller, P.; Ene, D. J. Am. Chem. Soc.
1992, 114, 2755-2757. (d) Mu¨ller, P.; Imoga¨ı, H. Tetrahedron: Asymmetry
1998, 9, 4419-4428.
(10) Lou, Y.; Horikawa, M.; Kloster, R. A.; Hawryluk, N. A.; Corey, E. J. J.
Am. Chem. Soc. 2004, 126, 8916-8919.
(11) The structure of this catalyst was confirmed by single-crystal X-ray
diffraction analysis.
(1) For reviews, see: (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo Compounds; John
Wiley: New York, 1998. (b) Doyle, M. P.; Ren, T. In Progress in Inorganic
Chemistry; Karlin, K. D., Ed.; John Wiley: New York, 2001; pp 113-
168. (c) Davies, H. M. L.; Beckwith, R. E. J. Chem. ReV. 2003, 103, 2861-
2908. (d) Forbes, D. C.; McMills, M. C. Curr. Org. Chem. 2001, 5, 1091-
1105. (e) Hashimoto, S. Farumashia 2001, 37, 1095-1097. (f) Doyle, M.
P.; Forbes, D. C. Chem. ReV. 1998, 98, 911-935. (g) Doyle, M. P.;
Protopopova, M. N. Tetrahedron 1998, 54, 7919-7946. (h) Kitagaki, S.;
Hashimoto, S. Yuki Gosei Kagaku Kyokaishi 2001, 59, 1157-1168. (i)
Davies, H. M. L.; Antoulinakis, E. G. J. Organomet. Chem. 2001, 617-
618, 47-55. (j) Davies, H. M. L. Eur. J. Org. Chem. 1999, 2459-2469.
(2) Kennedy, M.; McKervey, M. A.; Maguire, A. R.; Roos, G. H. P. J. Chem.
Soc., Chem. Commun. 1990, 361-362.
(3) (a) Doyle, M. P.; Brandes, B. D.; Kazala, A. P.; Pieters, R. J.; Jarstfer, M.
B.; Watkins, L. M.; Eagle, C. T. Tetrahedron Lett. 1990, 31, 6613-6616.
(b) Doyle, M. P.; Zhou, Q.-L.; Simonsen, S. H.; Lynch, V. Synlett 1996,
697-698. (c) Doyle, M. P.; Winchester, W. R.; Protopopova, M. N.; Mu¨ller,
P.; Bernardinelli, G.; Ene, D.; Motallebi, S. HelV. Chim. Acta 1993, 76,
2227-2235.
(4) Hashimoto, S.; Watanabe, N.; Ikegami, S. Tetrahedron Lett. 1990, 31,
5173-5174.
9
10.1021/ja052254w CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 14223-14230
14223