A R T I C L E S
Scheme 1
Percec et al.
and three-dimensional (3-D) Pm3hn cubic, {Im}3hn cubic, P42/mnm
tetragonal, and 12-fold symmetry lattices.4a-f,6,7,9
Efforts are under way to understand the evolution of homo-
chirality at interfaces.8,10,11 Polymers adopting a preferred helical
screw sense are of particular interest because individual
molecules might be resolved by scanning tunneling (STM) and
atomic force (AFM) microscopy.11 Cis-transoidal polyphenyl-
acetylenes (PPAs) adopt a helical conformation12a,13 whose
screw sense is selected by incorporation of chiral substituents
or by complexation of chiral substrates.14 Visualization of
predominantly single-handed helical superstructures on mica or
highly ordered pyrolytic graphite (HOPG) corroborates solution
spectroscopy but is limited by irreversible structural changes
undergone by the polymer during visualization.11d,e Intramo-
lecular cyclization via 6π electrocyclization of 1,3-cis,5-
hexatriene sequences in the PPA backbone generate cyclohexa-
diene repeat units at temperatures as low as 20 °C in solution
(Scheme 1).12 Re-aromatization of the cyclohexadiene moiety
results in extrusion of triarylbenzene and concomitant chain
cleavage at higher temperatures.12 A second chain cleavage
event occurs in solutions exposed to O2 and ambient light, which
likely proceeds via direct oxidation of the polyene backbone12d
(not shown in Scheme 1).
(4) For examples of dendritic macromonomers polymerized using various living
methods, see: (a) Percec, V.; Heck, J.; Lee, M.; Ungar, G.; Alvarez-Castillo,
A. J. Mater. Chem. 1992, 2, 1033-1039. (b) Percec, V.; Obata, M.; Rudick,
J. G.; De, B. B.; Glodde, M.; Bera, T. K.; Magonov, S. N.; Balagurusamy,
V. S. K.; Heiney, P. A. J. Polym. Sci., Part A: Polym. Chem. 2002, 40,
3509-3533. (c) Percec, V.; Schlueter, D. Macromolecules 1997, 30, 5783-
5790. (d) Percec, V.; Holerca, M. N.; Magonov, S. N.; Yeardley, D. J. P.;
Ungar, G.; Duan, H.; Hudson, S. D. Biomacromolecules 2001, 2, 706-
728. (e) Percec, V.; Holerca, M. N. Biomacromolecules 2000, 1, 6-16. (f)
Duan, H.; Hudson, S. D.; Ungar, G.; Holerca, M. N.; Percec, V. Chem.-
Eur. J. 2001, 7, 4134-4141. (g) Zhang, A.; Zhang, B.; Wa¨chtersbach, E.;
Schmidt, M.; Schlu¨ter, A. D. Chem.-Eur. J. 2003, 9, 6083-6092. (h) Zhang,
A.; Wei, L.; Schlu¨ter, A. D. Macromol. Rapid Commun. 2004, 25, 799-
803.
(5) For examples of the dendritic macromonomer strategies, see: (a) Draheim,
G.; Ritter, H. Macromol. Chem. Phys. 1995, 196, 212-222. (b) Jahromi,
S.; Coussens, B.; Meijerink, N.; Braam, A. W. M. J. Am. Chem. Soc. 1998,
120, 9753-9762. (c) Bao, Z.; Amundson, K. R.; Lovinger, A. J.
Macromolecules 1998, 31, 8647-8649. (d) Sato, T.; Jiang, D.-L.; Aida,
T. J. Am. Chem. Soc. 1999, 121, 10658-10659. (e) Setayesh, S.; Grimsdale,
A. C.; Weil, T.; Enkelmann, V.; Mu¨llen, K.; Meghdadi, F.; List, E. J. W.;
Leising, G. J. Am. Chem. Soc. 2001, 123, 946-953. (f) Marsitzky, D.;
Vestberg, R.; Blainey, P.; Tang, B. T.; Hawker, C. J.; Carter, K. R. J. Am.
Chem. Soc. 2001, 123, 6965-6972. (g) Kim, H.-J.; Zin, W.-C.; Lee, M. J.
Am. Chem. Soc. 2004, 126, 7009-7014. (h) Kaneko, T.; Horie, T.; Asano,
M.; Aoki, T.; Oikawa, E. Macromolecules 1997, 30, 3118-3121. (i)
Kaneko, T.; Asano, M.; Yamamoto, K.; Aoki, T. Polym. J. 2001, 33, 879-
890. (j) Schenning, A. P. H. J.; Fransen, M.; Meijer, E. W. Macromol.
Rapid Commun. 2002, 23, 265-270. (k) Fo¨rster, S.; Neubert, I.; Schlu¨ter,
A. D.; Lindner, P. Macromolecules 1999, 32, 4043-4049. (l) Percec, V.;
Schlueter, D.; Ungar, G.; Cheng, S. Z. D.; Zhang, A. Macromolecules 1998,
31, 1745-1762. (m) Percec, V.; Heck, J.; Ungar, G. Macromolecules 1991,
24, 4957. (n) Percec, V.; Heck, J.; Tomazos, D.; Falkenberg, F.; Blackwell,
H.; Ungar, G. J. Chem. Soc., Perkin Trans. 1 1993, 2799. (o) Percec, V.;
Tomazos, D.; Heck, J.; Blackwell, H.; Ungar, G. J. Chem. Soc., Perkin
Trans. 2 1994, 31.
Direct visualization of dendron-jacketed polymers offers the
opportunity to quantitatively probe fundamental questions about
molecular conformation and the formation of 1-D, 2-D, and 3-D
periodic states.1f Retrostructural analysis of the bulk self-
organized lattices confirms that single molecules are investigated
and permits rational design of polymers with controlled shape,
stiffness, and size that can reverse traditional trends encountered
in their pristine macromolecules.6b Previous studies of flexible
polymer backbones jacketed with self-assembling dendrons have
elucidated the mechanism for shape evolution.4c,6a-c Mac-
romonomers derived from flat-tapered dendrons form disc-
shaped oligomers (i.e., L , a, where L is the length of the chain
and a is the lattice parameter, which is the same as the diameter
of a cylindrical macromolecule). Longer oligomers (L < a)
behave as short, flexible stacks. Polymers of a given degree of
polymerization (DP) exhibit rodlike character when L > a and
become stiff when L . a. Polymerization of macromonomers
containing conical dendrons generate fragments of sphere when
DP < µ′ (where µ′ is the number of dendrons in a single
spherical object). In the ideal case where DP ) µ′, the spherical
object is a single macromolecule. When DP > µ′, quasi-
equivalence of flat-tapered and conical dendrons allows the
object to adopt a cylindrical shape whose stiffness is attenuated
by the size of the dendritic side chain. On the basis of
conformational analysis of visualized dendronized polymers and
geometrical arguments, the polymer backbone penetrating a
cylindrical object can adopt a helical conformation.1f,6
(6) For examples of polystyrene dendronized with self-assembling monoden-
drons, see: (a) Percec, V.; Ahn, C.-H.; Barboiu, B. J. Am. Chem. Soc.
1997, 119, 12978-12979. (b) Percec, V.; Ahn, C.-H.; Ungar, G.; Yeardley,
D. J. P.; Mo¨ller, M.; Sheiko, S. S. Nature 1998, 391, 161-164. (c) Percec,
V. et al. J. Am. Chem. Soc. 1998, 120, 8619-8631. (d) Prokhorova, S. A.;
Sheiko, S. S.; Mo¨ller, M.; Ahn, C.-H.; Percec, V. Macromol. Rapid
Commun. 1998, 19, 359-366. (e) Prokhorova, S. A.; Sheiko, S. S.;
Mourran, A.; Azumi, R.; Beginn, U.; Zipp, G.; Anh, C.-H.; Holerca, M.
N.; Percec, V.; Mo¨ller, M. Langmuir 2000, 16, 6862-6867. (f) Rapp, A.;
Schnell, I.; Sebastiani, D.; Brown, S. P.; Percec, V.; Spiess, H. W. J. Am.
Chem. Soc. 2003, 125, 13284-13297. (g) Prokhorova, S. A.; Sheiko, S.
S.; Ahn, C.-H.; Percec, V.; Mo¨ller, M. Macromolecules 1999, 32, 2653-
2660.
(7) For examples of noncovalent attach-to strategies, see: (a) Percec, V.;
Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Spiess,
H.-W.; Hudson, S. D.; Duan, H. Nature 2002, 419, 384-387. (b) Bilibin,
A. Y.; Moukhina, I. V.; Girbasova, N. V.; Egorova, G. G. Macromol. Chem.
Phys. 2004, 205, 1660-1666. (c) Kamikawa, Y.; Kato, T.; Onouchi, H.;
Kashiwagi, D.; Maeda, K.; Yashima, E. J. Polym. Sci., Part A: Polym.
Chem. 2004, 42, 4580-4586.
(8) Percec, V.; et al. Nature 2004, 430, 764-768.
(9) (a) Zeng, X.; Ungar, G.; Liu, Y.; Percec, V.; Dulcey, A. E.; Hobbs, J. K.
Nature 2004, 428, 157-160. (b) Ungar, G.; Liu, Y.; Zeng, X.; Percec, V.;
Cho, W.-D. Science 2003, 299, 1208-1211.
(10) Mamdouh, W.; Uji-i, H.; Dulcey, A. E.; Percec, V.; De Feyter, S.; De
Schryver, F. C. Langmuir 2004, 20, 7678-7685.
9
15258 J. AM. CHEM. SOC. VOL. 127, NO. 43, 2005