2 (a) T. V. Laine, U. Piironen, K. Lappalainen, M. Klinga, E. Aitola and
M. Leskela¨, J. Organomet. Chem., 2000, 606, 112; (b) A. Ko¨ppl and
H. G. Alt, J. Mol. Catal. A: Chem., 2000, 154, 45.
3 M. D. Leatherman, S. A. Svejda, L. K. Johnson and M. Brookhart,
J. Am. Chem. Soc., 2003, 125, 3068.
4 C. Popeney and Z. Guan, Organometallics, 2005, 24, 1145.
5 (a) D. Astruc and F. Chardac, Chem. Rev., 2001, 101, 2991; (b)
R. Kreiter, A. W. Kleij, R. J. M. Klein Gebbink and G. van Koten,
Top. Curr. Chem., 2001, 217, 163; (c) R. van Heerbeek, P. C. J. Kamer,
P. W. N. M. van Leeuwen and J. N. H. Reek, Chem. Rev., 2002, 102,
3717.
6 J. W. J. Knapen, A. W. van der Made, J. C. de Wilde, P. W. N. M. van
Leeuwen, P. Wijkens, D. M. Grove and G. van Koten, Nature, 1994,
372, 659.
branched polymers. At the same time, the polymers are probably
produced by more protected active centers in larger dendrimers,
with lower activity, but higher Mw (and PDI). For instance, the
later is reasonable if back-folding of terminal active species into the
dendrimer matrix becomes significant at higher generation.
In summary, we have shown an example in which the size of
the dendrimer regulates the production of ethylene insertion
products (oligomer vs. polymer), the oligomer chain-length
distribution (a), and the branching density, molecular weight,
and polydispersity of the polymers. It is noteworthy that such
dendritic effect has been obtained with peripheral metallodendri-
mers when core- or focal-point-dendrimers are a priori more suited
systems for these purposes.
7 See, for example: (a) A. W. Kleij, R. A. Gossage, R. J. M. K. Gebbink,
N. Brinkmann, E. J. Reijerse, U. Kragl, M. Lutz, A. L. Spek and G. van
Koten, J. Am. Chem. Soc., 2000, 122, 12112; (b) A. Dahan and
M. Portnoy, Chem. Commun., 2002, 2700.
We thank financial support from the DGI-Ministerio de Ciencia
y
Tecnolog´ıa (project BQU2001-1160) and Comunidad de
8 (a) C. Mu¨ller, L. J. Ackerman, J. N. H. Reek, P. C. J. Kamer and
P. W. N. M. van Leeuwen, J. Am. Chem. Soc., 2004, 126, 14960; (b)
M. J. Overett, R. Meijboom and J. R. Moss, Dalton Trans., 2005,
551.
9 (a) D. Seyferth, R. Wryrwa, U. W. Franz and S. Becke, PCT Int.
Appl. WO 97/32908, 1997; (b) K. Matyjaszewski, T. Shigemoto,
J. M. J. Fre´chet and M. Leduc, Macromolecules, 1996, 29, 4167; (c)
G. Smith, R. Chen and S. Mapolie, J. Organomet. Chem., 2003, 673,
111; (d) Z.-J. Zheng, J. Chen and Y.-S. Li, J. Organomet. Chem., 2004,
689, 3040.
10 R. Chen and S. F. Mapolie, J. Mol. Catal. A: Chem., 2003, 193, 33.
11 G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., Int.
Ed., 1999, 38, 428.
12 (a) O. Daugulis and M. Brookhart, Organometallics, 2002, 21, 5926; (b)
O. Daugulis, M. Brookhart and P. S. White, Organometallics, 2002, 21,
5935.
Madrid (project GR/MAT/0733/2004). In addition, we express
our gratitude to Carmen Mart´ınez and Carlos Mart´ın, REPSOL
YPF, for their valuable assistance with 13C NMR polymer
analyses, and Ma Teresa Rodr´ıguez Laguna, Dpto. Qu´ımica F´ısica
(UAH), for her significant help with GPC polymer analyses.
Notes and references
{ We found the starting material [NiBr2(DME)] to be totally inactive under
the same reaction conditions.
§ Schulz–Flory parameter a 5 kp/(kp + kct) 5 mol of Cn+2/mol of Cn;
kp 5 rate of propagation, kct 5 rate of chain transfer.
1 (a) V. C. Gibson and S. K. Spitzmesser, Chem. Rev., 2003, 103, 283; (b)
S. D. Ittle, L. K. Johnson and M. Brookhart, Chem. Rev., 2000, 100,
1169.
13 (a) J. R. Severn, J. C. Chadwick and V. van Axel Castelli,
Macromolecules, 2004, 37, 6258; (b) G. B. Galland, R. F. de Souza,
R. S. Mauler and F. F. Nunes, Macromolecules, 1999, 32, 1620.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 5217–5219 | 5219