Enantioselective Diboration of Simple Alkenes
TABLE 1. Survey of Chiral Ligands in the
Rh-Catalyzed Alkene Diboration Reaction
SCHEME 1. General Mechanism for
Transition-Metal-Catalyzed Reaction by Alkenes
and Diboron Compounds
entry
ligand
% yield syn:anti % ee syn (anti)
1
2
3
4
5
6
7
8
9
Binap (1)
25
37
<5
10
<5
24
<5
<5
<5
1.5:1
4.5:1
38 (84)
5 (55)
DIOP (2)
Chiraphos (3)
iPr-PHOX (4)
Josiphos (5)
Quinap (6)
Indane-Pybox (7)
MeO-Biphep (8)
H-MOP(9)
6.6:1
35:1
5
86
catalytic cycle that involves oxidative addition of the
diboron reagent to the metal,14 insertion of the alkene,15
and then reductive elimination of the organodiboron
product (Scheme 1).16,17 Significant reaction side products
are often observed that appear to arise from â-hydrogen
elimination of the intermediate organometallic complex.18
In an effort to develop an asymmetric variant of the
alkene diboration process, we initiated studies with chiral
transition-metal complexes.19 On the basis of the catalytic
cycle described above, exploratory experiments were
restricted to those involving bidentate chiral ligands in
combination with rhodium complexes since it was ex-
pected that bidentate ligands would render the analogous
four-coordinate d8 platinum diboryl intermediate inert
to olefin coordination and insertion reactions.20 These
initial experiments revealed that when chiral rhodium
complexes derived from Quinap are used, the reaction
exhibits remarkable enantioselection and good yields for
a number of prochiral alkene substrates and that with
this particular ligand structure the diboration process
operates relatively free from competitive side reactions.
While the diboron adduct may be conveniently oxidized
to the 1,2-diol, selective tandem reactions are also pos-
sible and include tandem cross-coupling/oxidation21 and
homologation/oxidation.22 In this manuscript we provide
the full details of the reaction development, document
the substrate scope, and provide a framework to forecast
stereoinduction in these reactions.
(11) (a) Iverson, C. N.; Smith, M. R., III Organometallics 1997, 16,
2757. (b) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem Commun.
1997, 689. (c) Marder, T. B.; Norman, N. C.; Rice, C. R. Tetrahedron
Lett. 1998, 39, 155. (d) Ishiyama, T.; Momota, S.; Miyaura, N. Synlett
1999, 1790. (d) Mann, G.; John, K. D.; Baker, R. T. Org. Lett. 2000, 2,
2105.
(12) Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. Angew.
Chem., Int. Ed. Engl. 1995, 34, 1336.
(13) Ram´ırez, J.; Corbera´n, R.; Sanau´, M.; Peris, E.; Fernandez, E.
Chem. Commun. 2005, 3056.
(14) Oxidative addition with Rh: (a) Dai, C.; Stringer, G.; Marder,
T. B.; Scott, A. J.; Clegg, W.; Norman, N. C. Inorg. Chem. 1997, 36,
272. (b) Nguyen, P.; Lesley, G.; Taylor, N. J.; Marder, T. B.; Pickett,
N. L.; Clegg, W.; Elsegood, M. R. J.; Norman, N. C. Inorg. Chem. 1994,
33, 4623. (c) Clegg, W.; Lawlor, F. J.; Marder, T. B.; Nguyen, P.;
Norman, N. C.; Orpen, A. G.; Quayle, A. J.; Rice, C. R.; Robins, E. G.;
Scott, A. J.; Souza, F. E. S.; Stringer, G.; Whittell, G. R. J. Chem. Soc.,
Dalton 1998, 301. Oxidative addition with Pt: (d) Iverson, C. N.; Smith,
M. R., III J. Am. Chem. Soc. 1995, 117, 4403. (e) Ishiyama, T.; Matsuda,
N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. Organometallics
1996, 15, 713. (f) Lesley, G.; Nguyen, P.; Taylor, N. J.; Marder, T. B.;
Scott, A. J.; Clegg, W.; Norman, N. C. Organometallics 1996, 15, 5137.
(g) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem.
Soc. 1993, 115, 11018. (h) Clegg, W.; Lawlor, F. J.; Marder, T. B.;
Nguyen, P.; Norman, N. C.; Orpen, A. G.; Quayle, M. J.; Rice, C. R.;
Robins, E. G.; Scott, A. J.; Souza, F. E. S.; Stringer, G.; Whittell, G. R.
J. Organomet. Chem. 1998, 550, 183.
(15) For a documented alkene insertion into a Rh-B bond, see:
Baker, R. T.; Calabrese, J. C.; Westcott, S. A.; Nguyen, P.; Marder, T.
B. J. Am. Chem. Soc. 1993, 115, 4367.
(16) For the organometallic chemistry of transition-metal boryls,
see: Irvine, G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice,
C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. Chem.
Rev. 1998, 98, 2685.
(17) For computational studies of the mechanism of alkene dibora-
tion, see: Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1997,
16, 1355.
(18) Competitive â-hydrogen elimination is catalyst and substrate
dependent, see ref 10.
(19) For a preliminary report, see: Morgan, J. B.; Miller, S. P.;
Morken, J. P. J. Am. Chem. Soc. 2003, 125, 8702. See also, ref 21.
(20) Bidentate ligands are known to inhibit the Pt-catalyzed dibo-
ration of alkynes and the Pd-catalyzed diboration of allenes. See ref
14f and Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.;
Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328.
Results and Discussion
1. Reaction Development. A. Ligand Evaluation. On
the basis of the mechanism depicted in Scheme 1,
platinum complexes were avoided in exploratory studies
since chiral bidentate ligands were expected to prohibit
alkene coordination and insertion reactions that involve
d8 diboryl intermediates. Instead, an initial comparative
ligand analysis was conducted with a Rh(I) salt and
included a number of symmetric and nonsymmetric
bidentate ligands as well as a monodentate ligand
structure (Table 1). This survey was executed with trans-
â-methylstyrene and bis(catecholato)diboron [B2(cat)2] as
the reaction substrates. Each chiral ligand under ques-
tion was first treated with (cod)2RhBF4 followed by the
diboron reagent in THF at room temperature. Subse-
quently, the alkene was added and the reaction allowed
to stir for 12 h. Oxidative workup was accomplished by
(21) Miller, S. P.; Morgan, J. B.; Nepveux, F. J.; Morken, J. P. Org.
Lett. 2004, 6, 131.
(22) Kalendra, D. M.; Duen˜es, R. A.; Morken, J. P. Synthesis 2005,
1749.
J. Org. Chem, Vol. 70, No. 23, 2005 9539