2696
C. H. Oh et al.
LETTER
(5) (a) Paquette, L. A.; Geng, F. J. Am. Chem. Soc. 2002, 124,
9199. (b) Mukai, C.; Kobayashi, M.; Kim, I. J.; Hanaoka, M.
Tetrahedron 2002, 58, 5225. (c) Anger, T.; Graalmann, O.;
Schröder, H.; Gerke, R.; Kaiser, U.; Fitjer, L.; Noltemeyer,
M. Tetrahedron 1998, 54, 10713. (d) Baralotto, C.; Chanon,
M.; Julliard, M. J. Org. Chem. 1996, 61, 3576. (e) Clive, D.
L. J.; Magnuson, S. R. Tetrahedron Lett. 1995, 36, 15.
(f) Metha, G.; Karra, S. R. J. Chem. Soc., Chem. Commun.
1991, 1367.
(6) (a) Almqvist, F.; Frejd, T. Tetrahedron: Asymmetry 1995, 6,
957. (b) Shenvi, A. B.; Gerlach, H. Helv. Chim. Acta 1980,
63, 2426.
(7) Similar types of alkylpalladium intermediates bearing a b-
hydrogen are prone to undergo elimination to the
corresponding alkenes. For reviews, see: (a) Trost, B. M.
Science 1991, 254, 1471. (b) Trost, B. M. Acc. Chem. Res.
1990, 23, 34. (c) Trost, B. M.; Shi, Y. J. Am. Chem. Soc.
1993, 115, 12491.
(8) For the use of formic acid or formates as a hydrogen donor
in palladium-mediated reactions, see: (a) Tsuji, J.
Palladium Reagents and Catalysts; Wiley: Chichester,
1995. (b) Tsuji, J.; Mandai, T. Synthesis 1996, 1. (c) Trost,
B. M.; Li, Y. J. Am. Chem. Soc. 1996, 118, 6625. (d)Oh,C.
H.; Jung, H. H.; Sung, H. R.; Kim, J. D. Tetrahedron 2001,
57, 1723. (e) Oh, C. H.; Park, S. J. Tetrahedron Lett. 2003,
44, 3785.
(9) (a) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 136.
(b) Krause, N.; Hoffmann-Röder, A. Synthesis 2001, 171.
(10) Furrow, M. E.; Myers, A. G. J. Am. Chem. Soc. 2004, 126,
5436.
AIBN. Chromatographic purification of TBS-protected
ceratopicanol resulted in failure due to difficulty in re-
moving tributyltin hydride and its derivatives.14 Thus,
upon completion of the reduction, the reaction mixture
was concentrated under reduced pressure, dissolved in
THF, and refluxed in the presence of TBAF. Due to high
affinity between tin and fluoride, this process could afford
pure ( )-ceratopicanol (11) as a colorless oil in 64% yield,
whose 1H NMR data were identical to reported data.15 Fi-
nally, we decided this synthesis using the mixture of 7a
and 7b without separation. About 1:3 mixture of 7a and 7b
was converted to the enone 10 and dissolving metal reduc-
tion to alcohol 8, and the following Barton–McCombie re-
duction and desilylation gave ( )-ceratopicanol in similar
yield based on a mixture of 7a and 7b. Overall, this syn-
thesis based on Pd-catalyzed cycloreduction as a key step
is composed of eight highly efficient steps and furnished
( )-ceratopicanol in overall 13–15% yield based on the
enediyne 3.
In conclusion, we accomplished the total synthesis of
ceratopicanol in eight steps with 14% overall yield based
on readily prepared endiyne 3. Most steps were composed
of highly efficient procedures. Finally, we wish to note
that Pd-catalyzed cycloreduction of enediyne 3, leading to
the key skeleton of the triquinane natural products, made
this synthesis highly efficient and practical method over
the reported syntheses to date.
(11) Piers, E.; Orellana, A. Synthesis 2001, 2138.
(12) Shono, T.; Kise, N.; Fujimoto, T.; Tominga, N.; Morita, H.
J. Org. Chem. 1992, 57, 7175.
(13) (a) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin
Trans. 1 1975, 1574. (b) Metha, G.; Umarye, J. D.
Tetrahedron Lett. 2001, 42, 1991. (c) Keller, V. A.; Kim, I.;
Burke, S. D. Org. Lett. 2005, 7, 737.
(14) Harrowven, D. C.; Guy, I. L. Chem. Commun. 2004, 1968.
(15) All new compounds were fully characterized by 1H NMR,
13C NMR, IR, HRMS (or elemental analysis).
Acknowledgment
We wish to acknowledge the financial support of Korea Research
Foundation (2004-C00197), Korea. A. K. Gupta is grateful for a
Brain-Pool fellowship supported by the KOSEF.
References
Ceratopicanol (11): 1H NMR (400 MHz, CDCl3): d = 3.71
(dd, J = 10.0, 7.2 Hz, 1 H), 2.49 (m, 1 H), 2.34 (ddd,
J = 11.3, 8.3, 8.3 Hz, 1 H), 2.15 (dd, J = 14.0, 9.6 Hz, 1 H),
1.88 (m, 1 H), 1.67 (ddd, J = 13.0, 8.4, 1.2 Hz, 1 H), 1.56 (m,
1 H), 1.50–1.32 (m, 5 H), 1.23 (dd, J = 13.0, 4.8 Hz, 1 H),
1.08 (dd, J = 13.8, 6.8 Hz, 1 H), 1.04 (s, 6 H), 0.88 (s, 3 H),
0.87 (s, 3 H). 13C NMR (100 MHz, CDCl3): d = 82.62, 58.80,
54.96, 51.23, 48.77, 44.18, 41.94, 41.68, 40.85, 39.56,
31.54, 30.60, 28.54, 23.66, 21.25. FT-IR (neat): 3310 (–OH,
br s) cm–1.
(1) (a) Oh, C. H.; Rhim, C. Y.; Kang, J. H.; Kim, A.; Park, B. S.;
Seo, Y. Tetrahedron Lett. 1996, 37, 8875. (b) Oh, C. H.;
Rhim, C. Y.; Jung, H. H.; Jung, S. H. Bull. Korean Chem.
Soc. 1999, 20, 643.
(2) Hanssen, H. P.; Abraham, W. R. Tetrahedron 1988, 44,
2175.
(3) For reviews, see: (a) Mehta, G.; Srikrishna, A. Chem. Rev.
1997, 97, 671. (b) Singh, V.; Thomas, B. Tetrahedron 1998,
54, 3647.
Isomer of Ceratopicanol (11b): 1H NMR (400 MHz,
CDCl3): d = 3.88 (m, 1 H), 2.64 (h, J = 8.0 Hz, 1 H), 2.45 (dt,
J = 11.2, 9.6 Hz, 1 H), 2.08 (dtd, J = 13.6, 9.2, 5.6 Hz, 1 H),
1.79 (ddd, J = 11.6, 11.4, 5.6 Hz, 1 H), 1.65–1.54 (m, 2 H),
1.46 (s, 1 H), 1.44 (s, 1 H), 1.38 (ddd, J = 12.8, 8.8, 2.0 Hz,
1 H), 1.31 (d, J = 4.0 Hz, 1 H), 1.28 (m, 1 H), 1.11–1.06 (m,
2 H), 1.04 (s, 3 H), 0.95 (s, 3 H), 0.91 (s, 3 H), 0.79 (s, 3 H).
13C NMR (100 MHz, CDCl3): d = 81.16, 59.62, 54.63, 52.27,
49.83, 44.25, 41.44, 40.97, 39.85, 32.81, 30.25, 29.35,
28.15, 23.69, 19.63. FT-IR (neat): 3320 (–OH, br s) cm–1.
HRMS (ES): m/z calcd for C15H26ONa+: 245.1881; found:
245.1872.
(4) (a) Hayano, K.; Ohfune, Y.; Shirahama, H.; Matsumoto, T.
Helv. Chim. Acta 1981, 64, 1347. (b) Comer, F. W.;
McCapra, F.; Qureshi, I. H.; Scott, A. I. Tetrahedron 1967,
23, 4761.
Synlett 2005, No. 17, 2694–2696 © Thieme Stuttgart · New York