Full Paper
[7]
a) J. W. Coe, P. R. Brooks, M. G. Vetelino, M. C. Wirtz, E. P. Arnold, J. Huang,
S. B. Sands, T. I. Davis, L. A. Lebel, C. B. Fox, A. Shrikhande, J. H. Heym, E.
Schaeffer, H. Rollema, Y. Lu, R. S. Mansbach, L. K. Chambers, C. C. Rovetti,
D. W. Schulz, F. D. Tingley, B. T. O'Neill, J. Med. Chem. 2005, 48, 3474–
3477; b) J. W. Coe, H. Rollema, B. T. O'Neill, Annu. Rep. Med. Chem. 2009,
44, 71–101. Cytisine itself has been used for smoking cessation as well,
see: c) J. F. Etter, Arch. Intern. Med. 2006, 166, 1553–1559.
a) J. A. Abin-Carriquiry, M. P. Zunini, B. K. Cassels, S. Wonnacott, F. Dajas,
Bioorg. Med. Chem. Lett. 2010, 20, 3683–3687; b) B. Ivanova, M. Spiteller,
J. Mol. Struct. 2013, 1034, 173–182.
For AChBP as a model, see: a) C. D. Dellisanti, Y. Yao, J. C. Stroud, Z. Z.
Wang, L. Chen, Nat. Neurosci. 2007, 10, 953–962. For cytisine in this re-
ceptor, see: b) P. Rucktooa, C. A. Haseler, R. van Elk, A. B. Smit, T. Gal-
lagher, T. K. Sixma, J. Biol. Chem. 2012, jbc.M112.360347. For other nico-
tinic pharmacophores, see: c) A. B. Smit, N. I. Syed, D. Schaap, J. van Min-
nen, J. Klumperman, K. S. Kits, H. Lodder, R. C. van der Schors, R. van Elk,
B. Sorgedrager, K. Brejc, T. K. Sixma, W. P. M. Geraerts, Nature 2001, 411,
261–268; d) K. Brejc, W. J. van Dijk, R. V. Klaassen, M. Schuurmans, J.
van der Oost, A. B. Smit, T. K. Sixma, Nature 2001, 411, 269–276; e) P. H. N.
Celie, S. E. van Rossum-Fikkert, W. J. van Dijk, K. Brejc, A. B. Smit, T. K.
Sixma, Neuron 2004, 41, 907–914; f) Y. Bourne, T. T. Talley, S. B. Hansen,
P. Taylor, P. Marchot, EMBO J. 2005, 24, 1512–1522; g) S. B. Hansen, G.
Sulzenbacher, T. Huxford, P. Marchot, P. Taylor, Y. Bourne, EMBO J. 2005,
24, 3635–3646.
Carriquiry et al.[8a] refer to an “aromatic-box” that encloses the piperidine
unit. For a detailed discussion see ref.[6b]. More recently examples of
cytisine-like bispidine systems with variations in the relevant area have
been reported, see: a) C. Eibl, I. Tomassoli, L. Munoz, C. Stokes, R. L.
Papke, D. Gündisch, Bioorg. Med. Chem. 2013, 21, 7283–7308; b) C. Eibl,
L. Munoz, I. Tomassoli, C. Stokes, R. L. Papke, D. Gündisch, Bioorg. Med.
Chem. 2013, 21, 7309–7329.
7.35–7.29 (m, 10 H, 5 × ArC-H-cis, 5 × ArC-H-trans), 6.88 (m, 2 H, C5′-
H-cis, C5′-H-trans), 6.62 (d, J = 8.0 Hz, 2 H, C3′-H-cis and trans), 4.94
(d, J = 14.5 Hz, 1 H, CH2Ph-trans), 4.93 (d, J = 14.5 Hz, 1 H, CH2Ph-
cis), 4.43 (d, J = 14.5 Hz, 1 H, CH2Ph-trans), 4.40 (d, J = 14.5 Hz, 1 H,
CH2Ph-cis), 3.87–3.91 (m, 4 H, OCH3-cis, C3-H-trans), 3.86 (s, 3 H,
OCH3-trans), 3.78 (dd, J = 10.5, 7.0 Hz, 1 H, C3-H-cis), 3.66–3.37 (m,
6 H, C5a-H2-cis, C5a-H2-trans, C6-H2-trans, C5a-H2-cis, C5a-H2-trans,
C6-H2-cis), 3.25–3.14 (m, 2 H, C6-H2-cis, C6-H2-trans), 2.42 (m, 1 H,
C5-H-trans), 2.27–2.05 (m, 5 H, C4-H2-trans, C5-H-cis, C4-H2-cis, C4-
H2-trans) ppm. 13C NMR only signals for cis-12 are reported:
(75 MHz, CDCl3): δ = 170.1, 163.8, 158.1, 138.9, 137.2, 128.5, 128.1,
127.4, 116.6, 108.7, 65.0, 53.2, 50.9, 50.4, 50.2, 36.3, 31.4 ppm. Spec-
troscopic data were consistent with those reported in the litera-
ture.[6b]
[8]
[9]
Acknowledgments
The authors thank Prof. Dr. C. Schmuck for excellent laboratory
conditions and fruitful discussions. Prof. Dr. G. Haberhauer and
Mrs. H. Wöll are thanked for help with the HPLC experiments.
Funding from the University of Duisburg, Germany and the Sci-
ence Support Center, Essen, Germany
[10]
Keywords: Asymmetric synthesis · Natural products ·
Alkaloids · Metathesis · Rearrangement · Carbenoids ·
Boronate homologation
[11]
[12]
Three asymmetric syntheses of cytisine have been described previously,
all of which were reviewed by O'Brien in 2007, see ref.[6a]: a) D. Gray, T.
Gallagher, Angew. Chem. Int. Ed. 2006, 45, 2419–2423; Angew. Chem.
2006, 118, 2479; b) T. Honda, R. Takahashi, H. Namiki, J. Org. Chem. 2005,
70, 499–504; c) B. Danieli, G. Lesma, D. Passarella, A. Sacchetti, A. Silvani,
A. Virdis, Org. Lett. 2004, 6, 493–496.
Gallagher described the asymmetric synthesis of a suitable lactam pre-
cursor to 3 by enzymatic resolution, see ref.[11a]. Although this would
add another step with a maximum yield of 50 % to the sequence, it
would – in theory – grant access to both enantiomers as well.
A recent racemic synthesis of the alcohol precursor 11 required 4 steps
including a selenium–oxide elimination: S.-H. Yang, G. R. Clark, V. Caprio,
Org. Biomol. Chem. 2009, 7, 2981–2990.
For recent reviews, see: a) D. S. Matteson, J. Org. Chem. 2013, 78, 10009–
10023; b) S. P. Thomas, R. M. French, V. Jheengut, V. K. Aggarwal, The
Chemical Record 2009, 9, 24–39; c) D. S. Matteson, D. Majumdar, J. Am.
Chem. Soc. 1980, 102, 7588–7590; d) D. S. Matteson, R. Ray, J. Am. Chem.
Soc. 1980, 102, 7590–7591.
A synthesis of 8 requiring some chromatography has been described,
see: D. S. Matteson, M. L. Peterson, J. Org. Chem. 1987, 52, 5116–5121.
For a chromatography free synthesis see the Supporting Information.
J. Wityak, R. A. Earl, M. M. Abelman, Y. B. Bethel, B. N. Fisher, G. S. Kauff-
man, C. A. Kettner, P. Ma, J. L. McMillan, J. Org. Chem. 1995, 60, 3717–
3722. The authors controlled the enantiomeric purity of pinanediol by
1H-NMR after converting the material into the Mosher ester. Convenient
alternatives are described in the Supporting Information.
[1] For a recent review, see: J. Rouden, M.-C. Lasne, J. Blanchet, J. Baudoux,
Chem. Rev. 2014, 114, 712–778. For an isolation procedure, see: A. J.
Dixon, M. J. McGrath, P. O'Brien, Org. Synth. 2006, 83, 141.
[2] T. S. Gray, Edinburgh Med. J. 1862, 7, 908–919.
[3] H. R. Ing, J. Chem. Soc. 1932, 2778–2780.
[4] a) E. G. Pérez, C. Méndez-Gálvez, B. K. Cassels, Nat. Prod. Rep. 2012, 29,
555–567; A. A. Jensen, B. Frølund, T. Lijefors, P. Krogsgaard-Larsen, J. Med.
Chem. 2005, 48, 4705–4745. See also: b) R. A. Glennon, M. Dukat, Bioorg.
Med. Chem. Lett. 2004, 14, 1841–1844; c) J. E. Tønder, P. H. Olesen, Curr.
Med. Chem. 2001, 8, 651–674.
[13]
[14]
[5] For asymmetric syntheses C3 and C5 modifications, see: a) P. Imming, P.
Klaperski, M. T. Stubbs, G. Seitz, D. Gündisch, Eur. J. Med. Chem. 2001,
36, 375–388; b) E. Marriére, J. Rouden, V. Tadino, M.-C. Lasne, Org. Lett.
2000, 2, 1121–1124; c) S. K. Chellappan, Y. Xiao, W. Tueckmantel, K. J.
Kellar, A. P. Kozikowski, J. Med. Chem. 2006, 49, 2673–2676; d) A. P. Kozik-
owski, S. K. Chellappan, Y. Xiao, K. M. Bajjuri, H. Yuan, K. J. Kellar, P. A.
Petukhov, ChemMedChem 2007, 2, 1157–1161; e) G. Roger, B. Lagnel, J.
Rouden, L. Besret, H. Valette, S. Demphel, J. Gopisetti, C. Coulon, M. Otta-
viani, L. A. Wrenn, S. R. Letchworth, G. A. Bohme, J. Benavides, M.-C.
Lasne, M. Bottlaender, F. Dollé, Bioorg. Med. Chem. 2003, 11, 5333–5343.
For C10 modifications, see: f) N. Houllier, S. Gouault, M.-C. Lasne, J.
Rouden, Tetrahedron 2006, 62, 11679–11686; g) J. Rouden, A. Ragot, S.
Gouault, D. Cahard, J.-C. Plaquevent, M.-C. Lasne, Tetrahedron: Asymmetry
2002, 13, 1299–1305; h) F. Frigerio, C. A. Haseler, T. Gallagher, Synlett
2010, 729–730.
[15]
[16]
[17]
[18]
a) B. J. Kim, J. Zhang, S. Tan, D. S. Matteson, W. H. Prusoff, Y.-C. Cheng,
Org. Biomol. Chem. 2012, 10, 9349–9358; b) D. Fan, R. L. Jarvest, L. Laza-
rides, Q. Li, X. Li, Y. Liu, L. Liao, J. E. Mordaunt, Z. Ni, J. Plattner, WO
2009046098, 2009.
In ref.[15] Matteson mentions addition of excess ZnCl2 (as applied in
ref.[17a]) or the removal of diisopropylamine (a ligand that potentially
disables ZnCl2) as possible ways to avoid loss of de when LiCHBr2 is
generated from LDA and CH2Br2. In our case only the latter worked relia-
bly.
[6] For a review on previous syntheses of cytisine see: a) D. Stead, P. O′
Brien, Tetrahedron 2007, 63, 1885–1896. For a later synthesis, see: b) C.
Hirschhäuser, C. A. Haseler, T. Gallagher, Angew. Chem. Int. Ed. 2011, 50,
5162–5165; Angew. Chem. 2011, 123, 5268. For total syntheses of deriva-
tives (C4-substituted), see: c) B. T. O'Neill, D. Yohannes, M. W. Bundes-
mann, E. P. Arnold, Org. Lett. 2000, 2, 4201–4204; d) P. Durkin, P. Magrone,
S. Matthews, C. Dallanoce, T. Gallagher, Synlett 2010, 18, 2789–2791. For
syntheses of norcytisines, see: e) D. Yohannes, K. Procko, L. A. Lebel, C. B.
Fox, B. T. O'Neill, Bioorg. Med. Chem. Lett. 2008, 18, 2316; f) D. Yohannes,
C. P. Hansen, S. R. Akireddy, T. A. Hauser, M. N. Kiser, N. J. Gurnon, C. S.
Day, B. Bhatti, W. S. Caldwell, Org. Lett. 2008, 10, 5353–5356. For highest
yielding racemic syntheses, see: g) D. Stead, P. O'Brien, A. J. Sanderson,
Org. Lett. 2005, 7, 4459–4462; h) J. W. Coe, Org. Lett. 2000, 2, 4205–4208.
The de was estimated by integrating the 13C-NMR signals at
86.71 ppm (for 9) and 86.79 ppm (for epi-9) as described by Matteson,[15]
although we did not employ chromium(III) acetylacetonate.
[19]
[20]
H. C. Brown, M. V. Rangaishenvi, Tetrahedron Lett. 1990, 31, 7115–7118.
Eur. J. Org. Chem. 2016, 958–964
963
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim