K. Krohn, D. Gehle, U. Flörke
FULL PAPER
dried to yield 3; (5.45 g, 18.2 mmol, 91%); m.p. 136 °C, (ref.[11] 137–
138 °C). [α]2D0 = –38.0 (c = 1.2, CHCl3), [ref.[11] –37 (c = 1.0,
CHCl3)]. 1H NMR (500 MHz, CDCl3): δ = 2.49 (s, 3 H, Ar–CH3),
3.10 (ddd, J3,2 = 3.6, J3,4 = 1.5, J3,5 = 0.8 Hz, 1 H, 3-H), 3.47 (ddd,
J2,3 = 3.6, J2,1 = 3.3, J2,4 = 0.8 Hz, 1 H, 2-H), 3.73–3.75 (m, 2 H,
6-H), 4.53 (m, 1 H, 5-H), 4.65 (d, J4,3 = 1.5 Hz, 1 H, 4-H), 5.72 (d,
J1,2 = 3.3 Hz, 1 H, 1-H), 7.42 (d, JAr,Ar = 8.3 Hz, 2 H, Ar-H), 7.87
(d, JAr,Ar = 8.3 Hz, 2 H, Ar-H) ppm. 13C NMR (125 MHz, CDCl3):
δ = 21.7 (q, Ar–CH3), 47.1 (d, C-3), 54.4 (d, C-2), 65.6 (t, C-6),
71.8 (d, C-5), 74.1 (d, C-4), 97.4 (d, C-1), 127.9, 130.2 (d, 4×C–
Ar), 133.1 (s, S–CAr), 145.7 (s, CAr–CH3) ppm.
phases were dried (Na2SO4), evaporated at reduced pressure, and
purified by column chromatography (CH2Cl2/acetone, 95:5).
1,6-Anhydro-3,4-dideoxy-4-methyl-β-D-threohex-3-enopyranose (4):
Amounts of reagents: 3 (500 mg, 1.7 mmol) in dried THF (20 mL);
CuCN (600 mg, 6.7 mmol, 4 equiv.) in dried diethyl ether (20 mL);
methyllithium (1.6 in diethyl ether, 8.4 mL, 13.4 mmol, 8 equiv.).
Yield of 4: colorless oil (155 mg, 1.1 mmol, 64%). [α]2D0 = –69.3 (c
1
= 1.09, MeOH). H NMR (500 MHz, CDCl3): δ = 1.75 (s, 3 H, 7–
H), 2.13 (br. s, 1 H, OH), 3.75 (dd, J6a,6b = 6.6, J6a,5 = 4.0 Hz, 1
H, 6a-H), 3.79 (d, J6b,6a = 6.6 Hz, 1 H, 6b-H), 4.29 (s, 1 H, 2-H),
4.44 (d, J5,6a = 4.0 Hz, 1 H, 5-H), 5.32 (s, 1 H, 3-H), 5.49 (s, 1 H,
1,6:3,4-Dianhydro-β-D
-altropyranose (12): NaOMe (137 mL of a 1-H) ppm. 13C NMR (125 MHz, CDCl3): δ = 19.0 (q, C-7), 69.0
0.8 solution, 100 mmol, 4 equiv.) was added to a stirred solution
of iodolevoglucosan (8) (7.5 g, 27.6 mmol) in CH2Cl2 (350 mL) at
room temp. with a dropping funnel over a period of 1 h. After 12 h,
the solution was neutralized to pH = 7 by addition of HCl (10%).
The aqueous phase was extracted with EtOAc (10×25 mL) and
the combined organic phases were dried (Na2SO4), filtered, and
concentrated to obtain the epoxide 12 (3.45 g, 23.9 mmol, 87%) as
a solid, which can be used without any further purification. M.p.
159 °C (ref.[23] 161–162 °C). [α]2D0 = –120 (c = 1.3, H2O), [ref.[23]
(d, C-2), 69.9 (t, C-6), 74.8 (d, C-5), 100.6 (d, C-1), 122.2 (d, C-3),
139.1 (s, C-4) ppm. IR (Film): ν = 3411 (s, O–H), 2980 (s, C–H),
˜
2924 (m, C–H), 1677 (w, C=C), 1461 (m, C–H), 1365 (s, C–H),
1360 (s, C–H), 1251 (s, C–O), 1011 (s, C–O) cm–1. MS (EI, 70 eV):
m/z (%) = 142 (55) [M+], 111 (21), 99 (90), 95 (77), 82 (100), 71
(58), 57 (55), 43 (82) 29 (20). HRMS (EI): calcd. for C7H10O3
142.0629; found 142.0629. C7H10O3 (142.15): calcd. C 59.14, H
7.09; found C 58.76, H 7.00.
1,6-Anhydro-2,3-dideoxy-2-methyl-β-D-erythrohex-2-enopyranose
1
–121 (c = 0.6, H2O)]. H NMR (500 MHz, MeOD): δ = 2.92 (dd,
J3,2 = 3.0, J3,4 = 3.5 Hz, 1 H, 3-H), 3.22 (d, J4,3 = 3.5 Hz, 1 H, 4-
(6b): Amounts of reagents: 5 (502 mg, 1.7 mmol) in dry THF
(20 mL); CuCN (600 mg, 6.7 mmol, 4 equiv.) in dry diethyl ether
(20 mL); methyllithium (1.6 in diethyl ether, 8.4 mL, 13.4 mmol,
H), 3.70 (d, J2,3 = 3.0 Hz, 1 H, 2-H), 3.81 (dd, J6a,6b = 7.4, J6a,5
=
4.4 Hz, 1 H, 6a-H), 4.08 (d, J6b,6a = 7.4 Hz, 1 H, 6b-H), 4.69 (d,
J5,6a = 4.4 Hz, 1 H, 5-H), 5.22 (s, 1 H, 1-H) ppm. 13C NMR
(50 MHz, CDCl3): δ = 50.1 (d, C-4), 51.0 (d, C-3), 65.4 (d, C-2),
66.8 (t, C-6), 69.7 (d, C-5), 99.4 (C-1) ppm.
8 equiv.). Yield: 6b, 202 mg, colorless oil (1.42 mmol, 85%). [α]2D0
=
1
+131.7 (c = 1.35, MeOH). H NMR (500 MHz, CDCl3): δ = 1.77
(s, 3 H, H–CH3), 2.35 (br. s, 1 H, OH), 3.45 (dd, J6a,6b = 7.7, J6a,5
= 1.9 Hz, 1 H, 6a-H), 3.63 (ddd, J4,5 = 3.0, J4,3 = 5.9, J4,6 = 1.3 Hz,
1 H, 4-H), 3.91 (dd, J6b,6a = 7.7, J6b,5 = 7.0 Hz, 1 H, 6b-H), 4.64
(dddd, J5,4 = 3.0, J5,6a = 1.9, J5,6b = 7.0, J5,3 = 1.6 Hz, 1 H, 5-H),
5.30 (s, 1 H, 1-H), 5.45 (ddd, J3,4 = 5.9, J3,5 = 1.6, J3,1 = 3.0 Hz, 1
H, 3-H) ppm. 13C NMR (125 MHz, CDCl3): δ = 18.7 (q, C-7), 63.0
(t, C-6), 67.1 (d, C-4), 76.5 (d, C-5), 99.4 (d, C-1), 119.6 (d, C-3),
1,6:3,4-Dianhydro-2-O-p-toluolsulfonyl-β-D-altropyranose (5):
A
solution of 12 (3.1 g, 21.5 mmol) in dried CH2Cl2 (50 mL) was
treated with triethylamine (5.5 mL, 43.0 mmol, 2 equiv.) and
DMAP (cat.). Tosyl chloride (8.2 g, 43.0 mmol, 2 equiv.) was added
to the cooled (0 °C) mixture in portions. After 2 h at room temp.
the conversion was complete and the mixture was poured into ice
water while stirring. The colorless needles were filtered off to yield
5 (5.90 g, 19.8 mmol, 92%); m.p. 101 °C, (ref.[24] 102–103 °C).
138.9 (s, C-2). IR (Film): ν = 3400 (s, O–H), 2969 (s, C–H), 2908
˜
(m, C–H), 1679 (w, C=C), 1450 (m, C–H), 1369 (s, C–H), 1259 (s,
C–O), 1086 (s, C–O) cm–1. MS (EI, 70 eV): m/z (%) = 142 (52)
[M+], 111 (24), 99 (100), 95 (55), 82 (95), 71 (55), 57 (58), 43 (72)
[α]2D0 = –68 (c = 0.36, CHCl3), [ref.[24] –70 (c = 1.35, CHCl3)]. H
1
NMR (500 MHz, CDCl3): δ = 2.49 (s, 3 H, Ar–CH3), 3.05 (dd, J3,2 29 (30). HRMS (EI): calcd. for C7H10O3 142.0629; found 142.0630.
= 2.4, J3,4 = 3.5 Hz, 1 H, 3-H), 3.15 (bd, J4,3 = 3.5 Hz, 1 H, 4-H), C7H10O3 (142.15): calcd. C 59.14, H 7.09; found C 59.76, H 7.56.
3.88 (dd, J6a,6b = 7.6, J6a,5 = 4.4 Hz, 1 H, 6a-H), 4.13 (d, J6b,6a
=
1,6-Anhydro-2-butyl-2,3-dideoxy-β- -erythrohex-2-enopyranose
D
7.6 Hz, 1 H, 6b-H), 4.51 (dd, J2,3 = 2.4, J2,1 = 2.6 Hz, 1 H, 2-H),
4.73 (dd, J5,6a = 4.4, J5,4 = 0.8 Hz, 1 H, 5-H), 5.26 (d, J1,2 = 2.6 Hz,
(6c): Amounts of reagents: 5 (500 mg, 1.68 mmol) in THF (20 mL);
CuCN [600 mg, 6.7 mmol, 4 equiv. in dry diethyl ether (10 mL)];
butyllithium (1.54 in hexane, 8.78 mL, 13.4 mmol, 8 equiv.).
Yield of 6c: colorless oil (209 mg, 1.14 mmol, 68%). [α]2D0 = +94.3
1 H, 1-H), 7.39 (d, JAr,Ar = 8.3 Hz, 2 H, Ar–H), 7.87 (d, JAr,Ar
=
8.3 Hz, 2 H, Ar–H) ppm. 13C NMR (125 MHz, CDCl3): δ = 21.7
(q, Ar–CH3), 49.0 (d, C-3), 49.7 (d, C-4), 67.5 (t, C-6), 69.9 (d, C-
5), 71.8 (d, C-2), 97.1 (d, C-1), 128.0, 130.2 (d, 4×C–Ar), 133.0 (s,
S–CAr), 145.6 (s, CAr–CH3) ppm.
1
(c = 0.86, MeOH). H NMR (500 MHz, CDCl3): δ = 0.93 (t, J10,9
= 7.3 Hz, 3 H, 10-H), 1.30–1.38 (m, 2 H, 9-H), 1.41–1.48 (m, 2 H,
8-H), 2.05–2.10 (m, 2 H. 7-H), 2.15 (br. s, 1 H, OH), 3.41 (dd, J6a,6b
= 7.7, J6a,5 = 2.0 Hz, 1 H, 6a-H), 3.66 (ddd, J4,5 = 3.4, J4,3 = 2.9,
J4,6a = 1.2 Hz, 1 H, 4-H), 3.92 (dd, J6b,6a = 7.7, J6b,5 = 6.5 Hz, 1
H, 6b-H), 4.65 (ddd, J5,6a = 2.0, J5,6b = 6.5, J5,4 = 3.4 Hz, 1 H, 5-
General Procedure for the Reaction of Epoxides with the Gilman
Cuprate: A suspension of CuCN (4 equiv.) in freshly distilled dry
diethyl ether was treated under argon at –78 °C with a solution of
the respective organolithium compound (8 equiv.) over a period of
5 min. The solution was then allowed to warm to 0 °C. During this
time the suspension became transparent. After stirring for 10 min
at 0 °C, the mixture was cooled to –78 °C and a solution of the
respective epoxide was added in dry THF. The resulting yellow
solution was stirred at –78 °C for 1 h and was then allowed to warm
up to –20 °C. After complete conversion of the starting material
(ca. 2 h, at –20 °C, TLC monitoring) the reaction was quenched by
dropwise addition of water (15 mL) and then with a saturated
aqueous NH4Cl (15 mL) solution. The biphasic mixture was stirred
until the aqueous phase turned blue. The aqueous phase was
washed with diethyl ether (5×20 mL) and the combined ethereal
H), 5.34 (d, J1,3 = 0.9 Hz, 1 H, 1-H), 5.46 (dd, J3,4 = 2.9, J3,1
=
0.9 Hz, 1 H, 3-H) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.8 (q,
C-10), 22.2 (t, C-9), 29.0 (t, C-8), 32.6 (t, C-7), 63.0 (t, C-6), 67.2
(d, C-4), 76.8 (d, C-5), 99.0 (d, C-1), 118.6 (d, C-3), 142.9 (s, C-
2) ppm. IR (Film): ν = 3402 (m, O–H), 2966 (m, C–H), 2924 (m,
˜
C–H), 2865 (m, C–H), 1693 (m, C=C), 1591 (m, C–H), 1455 (s, C–
H), 1366 (s, C–H), 1172 (s, C–O), 980 (s, C–O) cm–1. MS (EI, 70
eV): m/z (%) = 184 (48) [M+], 155 (9),141 (18), 111 (21), 95 (78),
85 (55), 82 (100), 81 (90), 71 (40) 68 (38), 57 (92), 55 (82), 43 (60),
41 (80) 27 (30). HRMS (EI): calcd. for C10H16O3; 184.1099; found
184.1101. C10H16O3 (184.23): calcd. C 65.19; H 8.75; found C
65.86; H 8.92.
4560
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 4557–4562