Journal of the American Chemical Society
Page 8 of 9
Heterobimetallic Catalysis. J. Am. Chem. Soc. 2015, 137, 14598–
Cis-Hydride η2-Dihydrogen Complex. A Case of Intramolecular
Reaction between η2-H2 and σ-Vinyl Ligands. Organometallics
1992, 11, 138–145.
(15) Gorgas, N.; Stöger, B.; Veiros, L. F.; Kirchner, K. Access to
Fe(II) Bis(σ-B-H) Aminoborane Complexes via Protonation of a
Borohydride Complex and Dehydrogenation of Amine-Boranes.
Angew. Chem., Int. Ed. 2019, 58, 13874–13879.
(16) (a) Parr, R. G. Yang, W. Density Functional Theory of Atoms
and Molecules; Oxford University Press: New York, 1989. (b)
Calculations performed at the M06/(6-311++G**)//PBE0/(SDD,
6-31G**) level using the GAUSSIAN 09 package. Single point
energy calculations included solvent effects (benzene) using the
PCM/SMD model. A full account of the computational details
and a complete list of references are provided as SI.
(17) (a) Barbarich, T. J.; Miller, S. M.; Anderson, O. P.; Strauss, S.
H. Coordination of the New Weakly Coordinating Anions Al
(OCH(CF3)2)4−, Al(OC(CH3)(CF3)2)4−, and Al(OC(Ph)(CF3)2)4− to the
Monovalent Metal Ions Li+ and Tl+. J. Mol. Catal. A Chem. 1998,
128, 289–331. (b) Krossing, I.; Raabe, I. Noncoordinating Anions
-Fact or Fiction? A Survey of Likely Candidates. Angew. Chem.,
Int. Ed. 2004, 43, 2066–2090. (c) Krossing, I. The Facile
Preparation of Weakly Coordinating Anions: Structure and
1
2
3
4
5
6
7
8
14601. (c) Tokmic, K.; Fout, A. R. Alkyne Semi-hydrogenation
with a Well-Defined Nonclassical Co-H2 Catalyst: A H2 Spin on
Isomerization and E -Selectivity. J. Am. Chem. Soc. 2016, 138,
13700–13705. (d) Higashida, K.; Mashima, K. E-Selective Semi-
Hydrogenation of Alkynes with Dinuclear Iridium Complexes
under Atmospheric Pressure of Hydrogen. Chem. Lett. 2016, 45,
866–868.
(9) Oger, C.; Balas, L.; Durand, T.; Galano, J.-M. Are Alkyne
Reductions Chemo-, Regio-, and Stereoselective Enough to
Provide Pure (Z)-Olefins in Polyfunctionalized Bioactive
Molecules? Chem. Rev. 2013, 113, 1313–1350.
(10) (a) Chirik, P.; Morris, R. Getting Down to Earth: The
Renaissance of Catalysis with Abundant Metals. Acc. Chem. Res.
2015, 48, 2495–2495. (b) White, M. C. Base-Metal Catalysis:
Embrace the Wild Side. Adv. Synth. Catal. 2016, 358, 2364–
2365.
(11) Fürstner, A. Iron Catalysis in Organic Synthesis: A Critical
Assessment of What It Takes To Make This Base Metal a
Multitasking Champion. ACS Cent. Sci. 2016, 2, 778–789.
(12) (a) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. Preparation and
Molecular and Electronic Structures of Iron(0) Dinitrogen and
Silane Complexes and Their Application to Catalytic
Hydrogenation and Hydrosilation. J. Am. Chem. Soc. 2004, 126,
13794–13807. (b) Daida, E. J.; Peters, J. C. Considering Fe II/IV
Redox Processes as Mechanistically Relevant to the Catalytic
Hydrogenation of Olefins by [PhBP-iPr3]Fe−Hx Species. Inorg.
Chem. 2004, 43, 7474–7485. (c) Trovitch, R. J.; Lobkovsky, E.; Bill,
E.; Chirik, P. J. Functional Group Tolerance and Substrate Scope
in Bis(Imino)Pyridine Iron Catalyzed Alkene Hydrogenation.
Organometallics 2008, 27, 1470–1478. (d) Yu, R. P.; Darmon, J.
M.; Hoyt, J. M.; Margulieux, G. W.; Turner, Z. R.; Chirik, P. J. High-
Activity Iron Catalysts for the Hydrogenation of Hindered,
Unfunctionalized Alkenes. ACS Catal. 2012, 2, 1760–1764. (e)
Fong, H.; Moret, M.-E.; Lee, Y.; Peters, J. C. Heterolytic H2
Cleavage and Catalytic Hydrogenation by an Iron
Metallaboratrane. Organometallics 2013, 32, 3053–3062. (f)
Hoyt, J. M.; Shevlin, M.; Margulieux, G. W.; Krska, S. W.; Tudge,
M. T.; Chirik, P. J. Synthesis and Hydrogenation Activity of Iron
Dialkyl Complexes with Chiral Bidentate Phosphines.
Organometallics 2014, 33, 5781–5790. (g) Sunada, Y.; Ogushi,
H.; Yamamoto, T.; Uto, S.; Sawano, M.; Tahara, A.; Tanaka, H.;
Shiota, Y.; Yoshizawa, K.; Nagashima, H. Disilaruthena- and
Ferracyclic Complexes Containing Isocyanide Ligands as
Effective Catalysts for Hydrogenation of Unfunctionalized
Sterically Hindered Alkenes. J. Am. Chem. Soc. 2018, 140, 4119–
4134.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Characterization
of
Silverpolyfluoroalkoxyaluminates
AgAl(ORF)4, Calculation of the Alkoxide Ion Affinity. Chem. Eur.
J. 2001, 7, 490–502. (d) Riddlestone, I. M.; Kraft, A.; Schaefer, J.;
Krossing, I. Taming the Cationic Beast: Novel Developments in
the Synthesis and Application of Weakly Coordinating Anions.
Angew. Chem., Int. Ed. 2018, 57, 13982–14024.
(18) Hamilton, D. G.; Crabtree, R. H. An NMR Method for
Distinguishing Classical from Nonclassical Structures in
Transition Metal Polyhydrides. J. Am. Chem. Soc. 1988, 110,
4126–4133.
(19) Crabtree, R. H. Dihydrogen Complexation. Chem. Rev.
2016, 116, 8750–8769.
(20) (a) Gorgas, N.; Alves, L. G.; Stöger, B.; Martins, A. M.;
Veiros, L. F.; Kirchner, K. Stable, Yet Highly Reactive Nonclassical
Iron(II) Polyhydride Pincer Complexes: Z -Selective Dimerization
and Hydroboration of Terminal Alkynes. J. Am. Chem. Soc. 2017,
139, 8130–8133. (b) Gorgas, N.; Stöger, B.; Veiros, L. F.; Kirchner,
K. Iron(II) Bis(Acetylide) Complexes as Key Intermediates in the
Catalytic Hydrofunctionalization of Terminal Alkynes. ACS Catal.
2018, 8, 7973–7982.
(13) (a) Wienhöfer, G.; Westerhaus, F. A.; Jagadeesh, R. V.;
Junge, K.; Junge, H.; Beller, M. Selective Iron-Catalyzed Transfer
Hydrogenation of Terminal Alkynes. Chem. Commun. 2012, 48,
4827. (b) Johnson, C.; Albrecht, M. Z -Selective Alkyne Semi-
Hydrogenation Catalysed by Piano-Stool
N -Heterocyclic
Carbene Iron Complexes. Catal. Sci. Technol. 2018, 8, 2779–
2783.
(14) (a) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini,
F.; Frediani, P. A Homogeneous Iron(II) System Capable of
Selectivity Catalyzing the Reduction of Terminal Alkynes to
Alkenes and Buta-1,3-Dienes. Organometallics 1989, 8, 2080–
2082. (b) Bianchini, C.; Meli, A.; Peruzzini, M.; Frediani, P.;
Bohanna, C.; Esteruelas, M. A.; Oro, L. A. Selective
Hydrogenation of 1-Alkynes to Alkenes Catalyzed by an Iron(II)
ACS Paragon Plus Environment