C O M M U N I C A T I O N S
Scheme 3. Intramolecular Diels-Alder Cycloadditiona
on a selective glycolate aldol addition to establish the C-2
stereocenter, a ring-closing metathesis reaction to complete the
oxonene, and an intramolecular Diels-Alder cycloaddition to
establish the relative configuration at C-1, C-10, and C-14. This
initial total synthesis of an asbestinin also serves to confirm the
absolute configuration of this family of natural products.
Acknowledgment. This work was supported by a research grant
from The National Institutes of Health (GM60567). We acknowl-
edge a generous gift of (R)-benzyl glycidyl ether from Daiso, Inc.
We also are grateful to Dr. Abimael D. Rodr´ıguez (University of
Puerto Rico, R´ıo Piedras) for his donation of an authentic sample
of the natural product.
Supporting Information Available: Experimental procedures, as
well as 1H and 13C NMR spectra for all new compounds, and synthetic
11-acetoxy-4-deoxyasbestinin D. This material is available free of
a Conditions: (a) Na, NH3, THF, -78 °C, 86%; (b) (COCl)2, DMSO,
Et3N, CH2Cl2, -78 to 0 °C, 94%; (c) Ph3PdC(OMe)C(O)Me (8), PhCH3,
110 °C, 84%; (d) Ph3PCH3Br, t-BuOK, THF, 0 °C, 87%; (e) NH4F, MeOH,
79%; (f) (COCl)2, DMSO, Et3N, CH2Cl2, -78 to 0 °C, 93%; (g)
Ph3PdCHC(O)Me (10), PhCH3, 110 °C, 80%.
References
Scheme 4. Completion of 11-Acetoxy-4-deoxyasbestinin Da
(1) For reviews, see: (a) Rodr´ıguez, A. D. Tetrahedron 1995, 51, 4571. (b)
Bernardelli, P.; Paquette, L. A. Heterocycles 1998, 49, 531. (c) Sung,
P.-S.; Chen, M.-C. Heterocycles 2002, 57, 1705.
(2) (a) MacMillan, D. W. C.; Overman, L. E. J. Am. Chem. Soc. 1995, 117,
10391. (b) Paquette, L. A.; Moradei, O. M.; Bernardelli, P.; Lange, T.
Org. Lett. 2000, 2, 1875. (c) Overman, L. E.; Pennington, L. D. Org.
Lett. 2000, 2, 2683. (d) Gallou, F.; MacMillan, D. W. C.; Overman, L.
E.; Paquette, L. A.; Pennington, L. D.; Yang, J. Org. Lett. 2001, 3, 135.
(e) Bernardelli, P.; Moradei, O. M.; Friedrich, D.; Yang, J.; Gallou, F.;
Dyck, B. P.; Doskotch, R. W.; Lange, T.; Paquette, L. A. J. Am. Chem.
Soc. 2001, 123, 9021. (f) MacMillan, D. W. C.; Overman, L. E.;
Pennington, L. D. J. Am. Chem. Soc. 2001, 123, 9033. (g) Chai, Y.; Vicic,
D. A.; McIntosh, M. C. Org. Lett. 2003, 5, 1039. (h) Corminboeuf, O.;
Overman, L. E.; Pennington, L. D. Org. Lett. 2003, 5, 1543. (i)
Corminboeuf, O.; Overman, L. E.; Pennington, L. D. J. Am. Chem. Soc.
2003, 125, 6650. (j) Molander, G. A.; St. Jean, D. J., Jr.; Haas, J. J. Am.
Chem. Soc. 2004, 126, 1642. (k) Crimmins, M. T.; Brown, B. H. J. Am.
Chem. Soc. 2004, 126, 10264.
(3) Morales, J. J.; Lorenzo, D.; Rodr´ıguez, A. D. J. Nat. Prod. 1991, 54,
1368.
(4) (a) Crimmins, M. T.; Emmitte, K. A. Synthesis 2000, 899. (b) Crimmins,
M. T.; DeBaillie, A. C. Org. Lett. 2003, 5, 3009.
a Conditions: (a) Ph3PCH3Br, KO-t-Bu, THF, 85%; (b) n-Bu4NF, THF,
95%; (c) Dess-Martin periodinane, pyridine, CH2Cl2, 98%; (d) MeMgCl,
THF, 0 °C, 98%; (e) HCl, CHCl3, 96%, 10:1 dr; (f) NaH, MeOH, 99%,
1:1.2 dr; (g) L-Selectride, THF, -78 °C, 94%; (h) Ac2O, Et3N, DMAP,
CH2Cl2, 99%; (i) TESOTf, 2,6-lutidine, CH2Cl2, 0 °C, 80%; (j) (+)-Ipc2BH,
THF, NaOH, H2O2; (k) n-Bu4NF, THF, 64% (two steps); (l) Tf2O, 2,6-
lutidine, CHCl3, 0 to 25 °C, 66%.
(5) (a) Crimmins, M. T.; Emmitte, K. A. Org. Lett. 1999, 1, 2029. (b)
Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653. (c)
Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000, 122, 5473. (d)
Crimmins, M. T.; Cleary, P. A. Heterocycles 2003, 61, 87.
(6) (a) Crimmins, M. T.; Emmitte, K. A. J. Am. Chem. Soc. 2001, 123, 1533.
(b) Crimmins, M. T.; Emmitte, K. A.; Choy, A. L. Tetrahedron 2002,
58, 1817. (c) Crimmins, M. T.; Powell, M. T. J. Am. Chem. Soc. 2003,
125, 7592.
(7) (a) Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am. Chem. Soc. 1997,
119, 7883. (b) Crimmins, M. T.; Choy, A. L. J. Org. Chem. 1997, 62,
7548. (c) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J.
Org. Chem. 2001, 66, 894. (d) Crimmins, M. T.; She, J. Synlett 2004,
1371.
(8) (a) Lachance, H.; Lu, X.; Gravel, M.; Hall, D. G. J. Am. Chem. Soc. 2003,
125, 10160. (b) Hubbs, J. L.; Heathcock, C. H. J. Am. Chem. Soc. 2003,
125, 12836.
(9) (a) McNeill, A. H.; Thomas, E. J. Tetrahedron Lett. 1993, 34, 1669. (b)
Farquhar, D.; Cherif, A.; Bakina, E.; Nelson, J. A. J. Med. Chem. 1998,
41, 965.
(10) The N-acyloxazolidinone derivative of glycolate 4 gave a slightly higher
yield, but with diminished diastereoselection (78%, >90:10 dr).
(11) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
(12) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.
(13) Guiney, D.; Gibson, C. L.; Suckling, C. J. Org. Biomol. Chem. 2003, 1,
664.
(14) Schinzer, D.; Bohm, O. M.; Altmann, K.-H.; Wartmann, M. Synlett 2004,
1375.
(15) Kuroda, H.; Hanaki, E.; Izawa, H.; Kano, M.; Itahashi, H. Tetrahedron
2004, 60, 1913.
The final stage of the synthesis required introduction of the C-15
stereocenter and formation of the oxapane. The regioselective and
stereoselective hydroboration of the 1,1-disubstituted olefin of diene
13 proved to be a challenge. Regioselective hydroboration occurred
in high yield with 9-BBN, but the reaction was not stereoselective.18
It was speculated that increasing the steric bulk at C-3 could impede
addition from the undesired face of the alkene, improving the
diastereoselection. Accordingly, the C-3 hydroxyl was protected
as triethylsilyl ether 14, but only moderate improvement in the
diastereoselectivity (2:1 dr) was observed. Fortunately, the use of
(+)-diisopinocampheylborane delivered the desired alcohol 15 as
a single isomer after oxidative workup.19,20 The triethylsilyl ether
was subsequently cleaved to deliver the diol 16 in 64% yield over
two steps. Taking advantage of the conditions employed by
Overman in the syntheses of briarellins E and F,2i the diol 16 was
treated with triflic anhydride and 2,6-lutidine to deliver 11-acetoxy-
4-deoxyasbestinin D (1) in 66% yield. Spectroscopic data for
synthetic 1 matched the reported data for the natural product in all
regards.3 Of particular note, the specific rotation of synthetic 1 and
a purified sample of natural 1 were identical ([R]26D; CHCl3; )
-15) when measured under the same conditions.
(16) Davidson, J. E. P.; Gilmour, R.; Ducki, S.; Davies, J. E.; Green, R.; Burton,
J. W.; Holmes, A. B. Synlett 2004, 1434.
(17) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
(18) (a) Brown, H. C.; Midland, M. M.; Levy, A. B.; Kramer, G. W. Organic
Synthesis Via Boranes; Wiley: New York, 1975. (b) Cheng, D.; Zhu, S.;
Yu, Z.; Cohen, T. J. Am. Chem. Soc. 2001, 123, 30. (c) Ebel, H.; Polborn,
K.; Steglich, W. Eur. J. Org. Chem. 2002, 2905. (d) Miyaoka, H.; Honda,
D.; Mitome, H.; Yamada, Y. Tetrahedron Lett. 2002, 43, 7773.
(19) Brown, H. C.; Desai, M. C.; Jadhav, P. K. J. Org. Chem. 1982, 47, 5065.
(20) Masamune, S.; Lu, L. D.-L.; Jackson, W. P.; Kaiho, T.; Toyoda, T. J.
Am. Chem. Soc. 1982, 104, 5523.
In summary, a highly stereoselective synthesis of 11-acetoxy-
4-deoxyasbestinin D has been completed in 26 linear steps, hinging
JA056921X
9
J. AM. CHEM. SOC. VOL. 127, NO. 49, 2005 17201