7686 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 24
Casiraghi et al.
(3) (a) Hanessian, S.; McNaughton-Smith, G. A Versatile Synthesis
of a â-turn Peptidomimetic Scaffold: An Approach Towards a
Designed Model Antagonist of the Tachykinin NK-2 Receptor.
Bioorg. Med. Chem. Lett. 1996, 6, 1567-1572. (b) Belvisi, L.;
Bernardi, A.; Checchia, A.; Manzoni, L.; Potenza, D.; Scolastico,
C.; Castorina, M.; Capelli, A.; Giannini, G.; Carminati, P.;
Pisano, C. Potent Integrin Antagonists from a Small Library of
RGD-Including Cyclic Pseudopeptides. Org. Lett. 2001, 3, 1001-
1004. (c) Gosselin, F.; Tourwe, D.; Ceusters, M.; Meert, T.;
Heylen, L.; Jurzak, M.; Lubell, W. D. Probing Opioid Receptor-
Ligand Interactions by Employment of Indolizidin-9-One Amino
Acid as a Constrained Gly2-Gly3 Surrogate in a Leucine-
Enkephalin Mimic. J. Pept. Res. 2001, 57, 337-344. (d) Andreu,
D.; Ruiz, S.; Carreno, C.; Alsina, J.; Albericio, F.; Jime´nez, M.
A.; De La Figuera, N.; Herranz, R.; Garcia-Lopez, M. T.;
(12) Bazan-Socha, S.; Bukiej, A.; Marcinkiewicz, C.; Musial, J.
Integrins in Pulmonary Inflammatory Diseases. Curr. Pharm.
Des. 2005, 11, 893-901.
(13) (a) Pytela, R.; Pierschbacher, M. D.; Argraves, S.; Suzuki, S.;
Ruoslahti, E. Arginine-Glycine-Aspartic Acid Adhesion Recep-
tors. Methods Enzymol. 1987, 144, 475-489. (b) Goodman, S.
L.; Holzemann, G.; Sulyok, G. A. G.; Kessler, H. Nanomolar
Small Molecule Inhibitors for RVâ6, RVâ5, and RVâ3 Integrins. J.
Med. Chem. 2002, 45, 1045-1051.
(14) (a) Dechantsreiter, M. A.; Planker, E.; Matha¨, B.; Lohof, E.;
Ho¨lzemann, G.; Jonczyk, A.; Goodman, S. L.; Kessler, H.
N-Methylated Cyclic RGD Peptides as Highly Active and Selec-
tive RVâ3 Integrin Antagonists. J. Med. Chem. 1999, 42, 3033-
3040. (b) Belvisi, L.; Caporale, A.; Colombo, M.; Manzoni, L.;
Potenza, D.; Scolastico, C.; Castorina, M.; Cati, M.; Giannini,
G.; Pisano, C. Cyclic RGD Peptides Containing Azabicycloalkane
Reverse-Turn Mimics. Helv. Chim. Acta 2002, 85, 4353-4368.
(c) Haubner, R.; Schmitt, W.; Ho¨lzemann, G.; Goodman, S. L.;
Jonczyk, A.; Kessler, H. Cyclic RGD Peptides Containing â-Turn
Mimetics. J. Am. Chem. Soc. 1996, 118, 7881-7891. (d) Lohof,
E.; Planker, E.; Mang, C.; Burkhart, F.; Dechantsreiter, M. A.;
Haubner, R.; Wester, H. J.; Schwaiger, M.; Ho¨lzemann, G.;
Goodman, S. L.; Kessler, H. Carbohydrate Derivatives for Use
in Drug Design: Cyclic RV-Selective RGD Peptides. Angew.
Chem., Int. Ed. 2000, 39, 2761-2764.
Gonzalez-Muniz, R. IBTM-Containing Gramicidin
S Ana-
logues: Evidence for IBTM as a Suitable Type II′ â-Turn
Mimetic. J. Am. Chem. Soc. 1997, 119, 10579-10586.
(4) (a) Vianello, P.; Cozzi, P.; Galvani, A.; Meroni, M.; Varasi, M.;
Volpi, D.; Bandiera, T. Solid-Phase Synthesis of a Small Library
of 3-Phenylthio-3-nicotinyl Propionic Acid Derivatives Acting as
Antagonists of the Integrin RVâ3. Bioorg. Med. Chem. Lett. 2004,
14, 657-661. (b) Gruner, S. A. W.; Ke´ri, G.; Schwab, R.;
Venetianer, A.; Kessler, H. Sugar Amino Acid Containing
Somatostatin Analogues that Induce Apoptosis in Both Drug-
Sensitive and Multidrug-Resistant Tumor Cells. Org. Lett. 2001,
3, 3723-3725. (c) Chakraborty, T. K.; Ghosh, S.; Jayaprakash,
S.; Sharma, J. A. R. P.; Ravikanth, V.; Diwan, P. V.; Nagaraj,
R.; Kunwar, A. C. Synthesis and Conformational Studies of
Peptidomimetics Containing Furanoid Sugar Amino Acids and
a Sugar Diacid. J. Org. Chem. 2000, 65, 6441-6457.
(5) Cox, D.; Aoki, T.; Seki, J.; Motoyama, Y.; Yoshida, K. The
Pharmacology of the Integrins. Med. Res. Rev. 1994, 14, 195-
228.
(6) (a) Ojima, I.; Chakravarty, S.; Dong, Q. Antithrombotic Agents:
From RGD to Peptide Mimetics. Bioorg. Med. Chem. 1995, 3,
337-360. (b) Samanen, J. GPIIb/IIIa Antagonists. Annu. Rep.
Med. Chem. 1996, 31, 91-100.
(7) (a) Maruga´n, J. J.; Manthey, C.; Anaclerio, B.; Lafrance, L.; Lu,
T.; Markotan, T.; Leonard, K. A.; Crysler, C.; Eisennagel, S.;
Dasgupta, M.; Tomczuk, B. Design, Synthesis, and Biological
Evaluation of Novel Potent and Selective RVâ3/RVâ5 Integrin Dual
Inhibitors with Improved Bioavailability. Selection of the Mo-
lecular Core. J. Med. Chem. 2005, 48, 926-934. (b) Cardo-Vila,
M.; Arap, W.; Pasqualini, R. RVâ5 Integrin-Dependent Pro-
grammed Cell Death Triggered by a Peptide Mimic of Annexin
V. Mol. Cell 2003, 11, 1151-1162. (c) Eskens, F. A. L. M.;
Dumez, H.; Hoekstra, R.; Perschl, A.; Brindley, C.; Bottcher, S.;
Wynendaele, W.; Drevs, J.; Verweij, J.; van Oosterom, A. T.
Phase I and Pharmacokinetic Study of Continuous Twice Weekly
Intravenous Administration of Cilengitide (EMD 121974), a
Novel Inhibitor of the Integrins RVâ3 and RVâ5 in Patients with
Advanced Solid Tumours. Eur. J. Cancer 2003, 39, 917-926.
(d) Stro¨mblad, S.; Cheresh, D. A. Integrins, Angiogenesis and
Vascular Cell Survival. Chem. Biol. 1996, 3, 881-885. (e) Chen,
X.; Plasencia, C.; Hou, Y.; Neamati, N. Synthesis and Biological
Evaluation of Dimeric RGD Peptide-Paclitaxel Conjugate as a
Model for Integrin-Targeted Drug Delivery. J. Med. Chem. 2005,
48, 1098-1106 (corigendum, J. Med. Chem. 2005, 48, 5874).
(8) (a) Wang, J.; Sprinter, T. A. Structural Specializations of
Immunoglobulin Superfamily Members for Adhesion to Integrins
and Viruses. Immunol. Rev. 1998, 163, 197-215. (b) Shimizu,
Y.; Rose, D. M.; Ginsberg, M. H. Integrins in the Immune
System. Adv. Immunol. 1999, 72, 325-380.
(9) (a) Danen, E. H. J. Integrins: Regulators of Tissue Function and
Cancer Progression. Curr. Pharm. Des. 2005, 11, 881-891. (b)
Yun, Z.; Menter, D. G.; Nicolson, G. L. Involvment of Integrin
RVâ3 in Cell Adhesion, Motility, and Liver Metastasis of Murine
RAW117 Large Cell Lymphoma. Cancer Res. 1996, 56, 3103-
3111.
(10) (a) Duong, L. T.; Rodan, G. A. Regulation of Osteoclast Formation
and Function. Rev. Endocr. Metab. Disord. 2001, 2, 95-104. (b)
Robey, P. G. RGD-Containing Proteins and Bone. Annu. Rep.
Med. Chem. 1993, 28, 227-236. (c) Engleman, V. W.; Nickols,
G. A.; Ross, F. P.; Horton, M. A.; Griggs, D. W.; Settle, S. L.;
Ruminski, P. G.; Teitelbaum, S. L. A Peptidomimetic Antagonist
of the RVâ3 Integrin Inhibits Bone Resorption in vitro and
Prevents Osteoporosis in vivo. J. Clin. Invest. 1997, 99, 2284-
2292.
(15) (a) Thornber, C. W. Isosterism and Molecular Modification in
Drug Design. Chem. Soc. Rev. 1979, 8, 563-580. (b) Chen, X.;
Wang, W. The Use of Bioisosteric Groups in Lead Optimization.
In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.;
Elsevier Academic Press: Amsterdam, 2003; Vol. 38, pp 333-
346.
(16) For recent examples of nonisosteric replacement in RGD-
containing cyclic ligands, see: (a) van Well, R. M.; Overkleeft,
H. S.; van der Marel, G: A.; Bruss, D.; Thibault, G.; de Groot,
P. G.; van Boom, J. H.; Overhand, M. Solid-Phase Synthesis of
Cyclic RGD-Furanoid Sugar Amino Acid Peptides as Integrin
Inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 331-334. (b) Royo,
M.; Van Den Nest, W.; del Fresno, M.; Frieden, A.; Yahalom,
D.; Rosenblatt, M.; Chorev, M.; Albericio, F. Solid-Phase Syn-
theses of Constrained RGD Scaffolds and Their Binding to the
RVâ3 Integrin Receptor. Tetrahedron Lett. 2001, 42, 7387-7391.
(c) Schumann, F.; Mu¨ller, A.; Koksch, M.; Mu¨ller, G.; Sewald,
N. Are â-Amino Acids γ-Turn Mimetics? Exploring a New Design
Principle for Bioactive Cyclopeptides. J. Am. Chem. Soc. 2000,
122, 12009-12010. (d) Annis, D. A.; Helluin, O.; Jacobsen, E.
N. Stereochemistry as a Diversity Element: Solid-Phase Syn-
thesis of Cyclic RGD Peptide Derivatives by Asymmetric Ca-
talysis. Angew. Chem., Int. Ed. 1998, 37, 1907-1909.
(17) Kumar, C. C.; Nie, H.; Rogers, C. P.; Malkowski, M.; Maxwell,
E.; Catino, J. J.; Armstrong, L. Biochemical Characterization of
the Binding of Echistatin to Integrin RVâ3 Receptor. J. Phar-
macol. Exp. Ther. 1997, 283, 843-853.
(18) (a) Xiong, J.-P.; Stehle, T.; Diefenbach, B.; Zhang, R.; Dunker,
R.; Scott, D. L.; Joachimiak, A.; Goodman, S. L.; Arnaout, M. A.
Crystal Structure of the Extracellular Segment of Integrin RVâ3.
Science 2001, 294, 339-345. (b) Xiong, J.-P.; Stehle, T.; Zhang,
R.; Joachimiak, A.; Frech, M.; Goodman, S. L.; Arnaout, M. A.
Crystal Structure of the Extracellular Segment of Integrin RVâ3
in Complex with an Arg-Gly-Asp Ligand. Science 2002, 296,
151-155.
(19) Rassu, G.; Auzzas, L.; Pinna, L.; Zambrano, V.; Zanardi, F.;
Battistini, L.; Marzocchi, L.; Acquotti, D.; Casiraghi, G. Variable
Strategy toward Carbasugars and Relatives. 4. Viable Access
to (4a-Carbapentofuranosyl)amines, (5a-Carbahexopyranosyl)-
amines, and Amino Acids Thereof. J. Org. Chem. 2002, 67,
5338-5342.
(20) Wu, W.-L.; Wu, Y.-L. Chemoselective Hydrolysis of Terminal
Isopropylidene Acetals and Subsequent Glycol Cleavage by
Periodic Acid in One Pot. J. Org. Chem. 1993, 58, 3586-3588.
(21) For previous syntheses of 3-aminocyclopentane carboxylic acids
see, for example: (a) Nakamura, S.; Karasawa, K.; Tanaka, N.;
Yonehara, H.; Umezawa, H. Structure of Amidinomycin. J.
Antibiot. Ser. A 1960, 13, 362-365. (b) Allan, R. D.; Johnston,
G. A. R.; Twitchin, B. Synthesis of Analogues of GABA. III. All
Four Stereoisomers of 3-Aminocyclopentanecarboxylic Acid and
a Stereochemical Correlation with Amidinomycin. Aust. J. Chem.
1979, 32, 2517-2521. (c) Evans, C.; McCague, R.; Roberts, S.
M.; Sutherland, A. G. Synthesis of Either Enantiomer of cis-3-
Aminocyclopentanecarboxylic Acid from Both Enantiomers of
Racemic 2-azabicyclo[2.2.1]hept-5-en-3-one. J. Chem. Soc., Per-
kin Trans. 1 1991, 656-657. (d) Cheˆnevert, R.; Martin, R.
Enantioselective Synthesis of (+) and (-)-cis-3-Aminocyclopen-
tanecarboxylic Acids by Enzymatic Asymmetrization. Tetrahe-
dron: Asymmetry 1992, 3, 199-200.
(11) (a) Matsuno, H.; Stassen, J. M.; Vermylen, J.; Deckmyn, H.
Inhibition of Integrin Function by a Cyclic RGD-Containing
Peptide Prevents Neointima Formation. Circulation 1994, 90,
2203-2206. (b) Choi, E. T.; Engel, L.; Callow, A. D.; Sun, S.;
Trachtenberg, J.; Santoro, S.; Ryan, U. S. Inhibition of Neoin-
timal Hyperplasia by Blocking RVâ3 Integrin with a Small
Peptide Antagonist GpenGRGDSPCA. J. Vasc. Surg. 1994, 19,
125-134.
(22) Blankenstein, J.; Zhu, J. Conformation-Directed Macrocycliza-
tion Reactions. Eur. J. Org. Chem. 2005, 1949-1964.