552
N. Volz et al.
LETTER
difference electron density determination and refined using
a ‘riding’ model (H(O)) free).
In conclusion, we have shown that tetrahydroxanthones
can be formed from tricycles generated by a vinylogous
aldol–oxa-Michael reaction. Furthermore the formal syn-
thesis of 4-dehydroxydiversonol was accomplished.
4b: Colorless crystals, C14H18O4, M = 250.28, crystal size
0.50 x 0.45 x 0.40 mm, triclinic, space group P-1 (No.2): a =
5.9907(2) Å, b = 8.5207(3) Å, c = 12.4965(5) Å, a =
97.603(2)º, β = 95.458(2)º, γ = 97.465(2)º, V = 622.81(4) Å3,
Z = 2, ρ(calcd) = 1.335 Mg m-3, F(000) = 268, µ = 0.097
OH
O
OH
OH
1) DMDO (74%)
2) NaBH4 (71%)
3) BBr3 (85%)
OMe
O
OH
mm-1, 5344 reflections (2θmax = 55°), 2715 unique (Rint
=
0.025), 168 parameters, 1 restraint, R1 (I > 2σ(I)) = 0.036,
wR2 (all data) = 0.104, GooF = 1.07, largest diff. peak and
hole 0.264 and –0.228 e Å-3. Crystallographic data
(excluding structure factors) for the structure reported in this
work have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication
no. CCDC 717754 (4b). These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre
O
O
13b
5
Scheme 3 Completion of the synthesis of 4-dehydroxydiversonol
(5) according to Tietze et al.5
Acknowledgment
(9) Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.;
Kjærsgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005,
127, 18296.
Financial support has been provided by the DFG (SPP 1179) and the
University of Karlsruhe (TH).
(10) For the hydrogenation of benzylic alcohols, see: (a) Suzuki,
M.; Kimura, Y.; Terashima, S. Bull. Chem. Soc. Jpn. 1986,
59, 3559. (b) Orsini, F.; Sello, G.; Travaini, E.; Di Gennaro,
P. Tetrahedron: Asymmetry 2002, 13, 253. (c) Couche, E.;
Fkyerat, A.; Tabacchi, R. Helv. Chim. Acta 2003, 86, 210.
(d) Kolarovic, A.; Berkes, D.; Baran, P.; Povazanec, F.
Tetrahedron Lett. 2005, 46, 975.
References and Notes
(1) For organocatalytic domino reactions: (a) Enders, D.;
Grondal, C.; Hüttl, M. M. Angew. Chem. Int. Ed. 2007, 46,
1570; Angew. Chem. 2007, 119, 1590. (b) For
organocatalytic conjugate addition reactions, see: Almasi,
D.; Alonso, D. A.; Najera, C. Tetrahedron: Asymmetry 2007,
18, 299. (c) The use of salicylaldehyde in domino oxa-
Michael reactions for the synthesis of chromenes,
coumarins, and related heterocycles has already been
reviewed: Shi, Y.-L.; Shi, M. Org. Biomol. Chem. 2007, 5,
1499.
(11) Selected NMR Data
Compound 4b: 1H NMR (400 MHz, CDCl3): d = 1.42 (s,
3 H), 1.57 (dd, J = 13.5, 9.8 Hz, 1 H), 1.67 (td, J = 13.5 Hz,
1 H), 2.06–2.14 (m, 2 H), 2.28 (s, 3 H), 3.70 (s, 3 H), 3.86–
3.90 (m, 1 H), 4.89 (mc, 1 H), 5.25 (mc, 1 H), 6.13 (s, 1 H),
6.24 (s, 1 H). 13C NMR (100 MHz, CDCl3): d = 21.9, 28.6,
34.7, 45.5, 55.4, 61.9, 73.9, 89.9, 102.9, 105.9, 108.5, 140.3,
156.2, 157.1.
(2) (a) Lesch, B.; Toräng, J.; Vanderheiden, S.; Bräse, S. Adv.
Synth. Catal. 2005, 347, 555. (b) Gérard, E. M. C.; Sahin,
H.; Encinas, A.; Bräse, S. Synlett 2008, 2702. (c) Rao,
T. V.; Rele, D. N.; Trivedi, G. K. J. Chem. Res. 1987, 196.
(d) Lesch, B.; Toräng, J.; Nieger, M.; Bräse, S. Synthesis
2005, 1888. (e) Nising, C. F.; Bräse, S. Chem. Soc. Rev.
2008, 37, 1218.
(3) Liu, K.; Chougnet, A.; Woggon, W.-D. Angew. Chem. Int.
Ed. 2008, 47, 5827; Angew. Chem. 2008, 120, 5911.
(4) Tietze, L. F.; Stecker, F.; Zinngrebe, J.; Sommer, K. M.
Chem. Eur. J. 2006, 12, 8770.
Compound 9b: 1H NMR (400 MHz, CDCl3): d = 1.21–1.30
(m, 2 H), 1.28 (t, J = 7.3 Hz, 3 H), 2.04 (s, 3 H), 2.28 (s,
3 H), 2.59 (ddd, J = 14.1, 8.0, 1.3 Hz, 1 H), 2.72 (ddd,
J = 14.1, 7.3, 1.3 Hz, 1 H), 3.26 (br s, 1 H), 3.86 (s, 3 H), 4.18
(q, J = 7.3 Hz, 2 H), 4.97 (dd, J = 5.8, 5.3 Hz, 1 H), 5.87
(ddd, J = 15.5, 1.3, 1.3 Hz, 1 H), 6.29 (s, 1 H), 6.35 (s, 1 H),
7.02 (ddd, J = 15.5, 7.8, 7.8 Hz, 1 H). 13C NMR (100 MHz,
CDCl3): d = 14.2, 21.7, 25.3, 38.7, 41.4, 55.4, 60.1, 60.2,
75.5, 103.3, 109.9, 111.0, 139.7, 144.4, 153.0, 158.2, 166.3.
Compound 10b: 1H NMR (400 MHz, CDCl3): d = 1.25 (t,
J = 7.1 Hz, 3 H), 1.27 (s, 3 H), 1.53–1.67 (m, 2 H), 1.68–1.85
(m, 4 H), 2.27 (s, 3 H), 2.28–2.34 (m, 2 H), 2.55–2.64 (m, 2
H), 3.80 (s, 3 H), 4.12 (q, J = 7.1 Hz, 2 H), 6.22 (s, 1 H), 6.28
(s, 1 H). 13C NMR (100 MHz, CDCl3): d = 14.2, 16.4, 19.2,
21.6, 23.8, 30.4, 34.5, 38.8, 55.3, 60.2, 75.4, 102.4, 107.0,
110.3, 136.9, 154.1, 157.6, 173.5.
(5) Tietze, L. F.; Spiegl, D. A.; Stecker, F.; Major, J.; Raith, C.;
Große, C. Chem. Eur. J. 2008, 14, 8956.
(6) For a different approach to diversonol, see: (a) Nising,
C. F.; Ohnemüller, U. K.; Bräse, S. Angew. Chem. Int. Ed.
2006, 45, 307; Angew. Chem. 2006, 118, 313. (b) Nicolaou,
K. C.; Li, A. Angew. Chem. Int. Ed. 2008, 47, 6579; Angew.
Chem. 2008, 120, 6681.
(7) The Trost group used also an asymmetric catalytic approach
towards chromanes. The key step is a palladium-catalyzed
etherification of phenols with allylic substrates to yield a
tetrasubstituted stereogenic center and subsequent ring
closure: (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc.
1998, 120, 9074. (b) Trost, B. M.; Shen, H. C.; Dong, L.;
Surivet, J.-P. J. Am. Chem. Soc. 2003, 125, 9276. (c) Trost,
B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P.; Sylvain, C.
J. Am. Chem. Soc. 2004, 126, 11966.
Compound trans-11b: 1H NMR (400 MHz, CDCl3):
d = 1.28 (t, J = 7.1 Hz, 3 H), 1.39 (s, 3 H), 2.30 (s, 3 H),
2.50–2.74 (m, 4 H), 3.88 (s, 3 H), 4.18 (q, J = 7.1 Hz, 2 H),
5.87 (d, J = 15.5 Hz, 1 H), 6.30 (s, 1 H), 6.37 (s, 1 H), 6.95
(ddd, J = 15.5, 7.6, 7.6 Hz, 1 H). 13C NMR (100 MHz,
CDCl3): d = 14.2, 22.4, 23.9, 41.9, 48.5, 56.0, 60.4, 79.5,
104.7, 108.4, 110.8, 125.4, 142.1, 147.7, 160.2, 160.8,
165.9, 190.0.
Compound cis-11b: 1H NMR (400 MHz, CDCl3): d = 1.27
(t, J = 7.2 Hz, 3 H), 1.39 (s, 3 H), 2.30 (s, 3 H), 2.59 (d,
J = 16.0 Hz, 1 H), 2.77 (d, J = 16.0 Hz, 1 H), 3.13 (mc, 2 H),
3.88 (s, 3 H), 4.15 (q, J = 7.2 Hz, 2 H), 5.94 (d, J = 11.7 Hz,
1 H), 6.29 (s, 1 H), 6.32–6.40 (m, 2 H). 13C NMR (100 MHz,
CDCl3): d = 14.2, 22.4, 23.7, 38.3, 48.5, 56.0, 60.0, 79.9,
104.6, 108.5, 110.7, 122.7, 143.0, 147.6, 160.2, 161.0,
166.1, 190.4.
(8) Crystal Structure Study of 4b
Single-crystal X-ray diffraction studies were carried out on
a Nonius KappaCCD diffractometer at 123(2) K using
MoKα radiation (λ = 0.71073 Å). The structures were solved
by Direct Methods (SHELXS-9713) and refinement were
carried out using SHELXL-9713 (full-matrix least-squares
refinement on F2). The hydrogen atoms were localized by
Synlett 2009, No. 4, 550–553 © Thieme Stuttgart · New York