612
D. Corona et al. / Spectrochimica Acta Part A 62 (2005) 604–613
Compound 2, m.p. 187–189 ◦C; C16H18Br2O2; MW 400.
acteristics: first, as an additive term to the equation or the
second one as multiplicatory term. Both approaches are used
in a series of such equations developed after seminal works
of Karplus [31].
MS m/z 400 [M+], 402 [M+ + 2], 404 [M+ + 4], 321, 323, 256
(1 0 0).
Compound 3, m.p. 140–141 ◦C; C17H18O2Br4; MW 570.
MS m/z 570 [M+], 572 [M+ + 2], 574 [M+ + 4], 576 [M+ + 6],
578 [M+ + 8], 491, 493, 495, 497, 411, 413, 415, 388, 171,
256, 129, 57 (1 0 0); IR νmax (cm−1) 2952, 2871, 1776, 1143.
Compound 4, m.p. 203–204 ◦C; C17H18O2Br4; MW 570.
MS m/z 570 [M+], 572 [M+ + 2], 574 [M+ + 4], 576 [M+ + 6],
578 [M+ + 8], 495, 493, 491, 467, 413, 390, 386, 388 (1 0 0),
307, 227; IR νmax (cm−1) 2958, 2929, 1778, 1309, 1207,
1141, 1055.
Acknowledgements
Our special thanks go to MSC Maria Isabel Chavez (I. De
Quimica, UNAM) for the NMR determinations. D. Corona
and S.A.H.P. thank SNI-Conacyt for research fellowship.
Compound 5, m.p. 110–111 ◦C; C16H18O2Br2; MW 400,
MS EI m/z 400, 402 [M+ + 2], 404 [M+ + 4]; IR νmax (cm−1
)
References
3086, 3006, 2943, 1772, 1641, 1323, 1240, 1152.
Compound 6, m.p. 241–243 ◦C; C18H18Br6O2; MW 740.
MS m/z FAB MH+ 741, 743 [MH+ + 2], 745 [MH+ + 4], 747
[MH+ + 6], 749[MH+ + 8], 751[MH+ + 10], 753[MH+ + 12];
665, 664, 663, 661, 648; IR νmax (cm−1) 2962, 2929, 2873,
1776, 1244, 1141.
[1] N.V. Sidwick, The Chemical Elements and their Components, vol.
II, Clarendon Press, Oxford, 1950, p. 1097.
[2] C. Brevard, P. Granger, Handbook of High Resolution Multinuclear
NMR, Wiley, New York, 1981, pp. 106–107.
[3] G.A. Webb, in: P. Laszlo (Ed.), Chemical and Biochemical Appli-
cations, vol. I, Academic Press, New York, 1983, p. 80.
[4] Z. Trontelj, J. Pirnat, L. Ehremberg, in: J.A.S. Smith (Ed.), Advances
in Nuclear Quadrupole Resonance, Heyden, New York, 1974, pp.
71–78.
[5] R.E. Moore, in: P.J. Scheuer (Ed.), Marine Natural Products: Chem-
ical and Biological Perspectives, vol. I, Academic Press, New York,
1978.
[6] T. Irie, M. Susuki, T. Masamune, Tetrahedron Lett. (1965) 1091.
[7] T. Irie, M. Susuki, T. Masamune, Tetrahedron 24 (1968) 4193.
[8] W. Fenical, J.J. Sims, P. Radlick, Tetrahedron Lett. (1973) 313.
[9] W. Fenical, J. Am. Chem. Soc. 96 (1974) 5580.
[10] R. Kazlauskas, P.T. Murphy, R.J. Quinn, R.J. Wells, Tetrahedron
Lett. (1977) 177.
[11] J.J. Sims, S.A. Pettus, R.M. Wing, 1976 Abstr., NATO Conf. Mar.
Nat. Prod.
[12] R. Mathias, P. Weyerstahl, Chem. Berichte 112 (1979) 3041.
[13] E. D´ıaz, H. Barrios, R. Villena, R.A. Toscano, Acta Crystallogr. C
47 (1991) 2720.
Compound 7, m.p. 158–159 ◦C; C16H18O2I2; MW 496
MS FAB m/z MH+ 497, 154 (1 0 0), 136; IR νmax (cm−1
)
3081, 2931, 2871, 1765, 1638, 1237, 1141, 1017.
Compound 8, m.p. 68–70 ◦C; C17H18O2Br2I2; mw 666.
MS m/z 666 [M+], 668 [M+ + 2], 670 [M+ + 4], 391, 359, 337,
307, 263, 205; IR νmax (cm−1) 2954, 2933, 1768, 1303, 1137,
1029.
Compound 9, m.p. 199–200 ◦C; C18H18Br4I2O2; MW
836. MS m/z FAB MH+ 836, 838 [MH+ + 2], 840 [MH+ + 4],
842 [MH+ + 6], 844 [MH+ + 8], 154 (1 0 0), 136; IR νmax
(cm−1) 2960, 2875, 1768, 1137, 1037.
Compound 10, m.p. 148–149 ◦C; C17H18O2Br2Cl2; MW
482. MS m/z 482 [M+], 484 [M+ + 2], 486 [M+ + 4], 488
[M+ + 6]; IR νmax (cm−1) 3080, 2952, 2873, 1776, 1467,
1417, 1327, 1238, 1201, 1143.
[14] E. D´ıaz, H. Barrios, R. Villena, R.A. Toscano, Acta Crystallogr. C
47 (1991) 2723.
[15] I. Salazar, E. D´ıaz, Tetrahedron 35 (1979) 815.
[16] (a) E. D´ıaz, R.A. Toscano, A. Alvarez, J.N. Shoolery, C.K.
Jankowski, Can. J. Chem. 68 (1990) 701;
Compound11, m.p. 243–245 ◦C;C17H18Cl4O2;MW394.
MS m/z 312 [M+ − 82], 314 [M+ − 84], 316 [M+ − 86], 230,
149 (1 0 0), 216 (85), 277 (35), 91 (50).
Compound 12, m.p. 240–242 ◦C; C18H18Cl4Br2O2; MW
564. MS m/z [M+] 564, 566 [M+ + 2], 568 [M+ + 4], 570
[M+ + 6], 572 [M+ + 8], 574 [M+ + 10], 533, 470, 435, 374
(1 0 0), 309 (30), 201 (50), 91 (70).
(b) E. D´ıaz, G.G. Dominguez, A. Mannino, G. Negro´n, C.K.
Jankowski, Magn. Reson. Chem. 23 (1985) 494.
[17] E. D
´ıaz, J.L. Nava, H. Barrios, D. Corona, A. Guzman, M.L. Mucin˜o,
A. Fuentes, Rev. Soc Quim. Mex. 47 (2003) 117.
[18] (a) T. Hiyama, Y. Okude, I.K. Kumura, N. Nozaki, Bull. Chem. Soc.
Jpn. 55 (1982) 561;
(b) E. D´ıaz, A. Ortega, C. Guerrero, A. Guzma´n, B. Lizama, A.
Fuentes, C.K. Jankowski, Nat. Prod. Lett. 12 (1998) 241.
[19] C.K. Jankowski, A.B. Laouz, D. Lesage, E. D´ıaz, Spectroscopy 17
(2003) 735.
[20] (a) J.W. Emsley, J. Feeney, L.H. Sutcliffe, High Resolution in NMR
Spectroscopy, vol. 2, Pergamon Press, 1966;
(b) R.M. Golden, L.C. Stubbs, J. Magn. Reson. 40 (1980) 115.
[21] A. Derome, Modern Techniques for Chemistry Research, Pergamon
Press, New York, 1987, p. 240.
[22] G.E. Martin, A.S. Sektzer, Two Dimensional NMR Methods for
Establishing Molecular Connectivity, VCH Publishers, New York,
1988, p. 219.
6. Calculations
The atomic coordinates used for these calculations were
obtained from the crystallographic data or from the molecular
modelling (Table 2). The homodihedral angles were calcu-
lated by optical superimposition of the first dihedral angle
H Ca Cb Cc on the second dihedral angle Ca Cb Cc X,
which indicates that the carbon Cb is not as important as the
Cc for these estimations.
Two different mode of applications of the electronegativ-
ity as a corrective term to this equation were used to take
into account the difference in the halogen atom nuclear char-
[23] A. Bax, S. Subramanian, J. Magn. Reson. 67 (1986) 565.
[24] A. Bax, J. Freeman, J. Magn. Reson. 44 (1981) 542.
[25] A. Bax, M.F. Summers, J. Am. Chem. Soc. 108 (1986) 2093.