6216
X. Jiao et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6212–6217
Ph
OH
N
NC
H2N
OMe
Ph
Br
a
b
N
OMe
Ph
O
OMe
O
O
50
51
52
c, d
R1
NH
Cl
Ph
Ph
N
N
O
e
OH
OH
O
O
N
N
f
53
54
R1
NH
N
Ph
R2
N
O
15, 17, 20, 36, 38-40
Scheme 2. Reagents and conditions: (a) malononitrile, Et3N; (b) HCO2H, reflux; (c) POCl3, 105 °C; (d) BBr3, DCM; (e) R1CH2NH2, n-BuOH; (f) Cs2CO3, R2Br, DMF.
MeO
MeO
S
NH
N
NH
N
S
a
N
N
n=1,
R
R
X
X
35-37, 41
55 (X = O, NH)
Scheme 3. Reagents and conditions: (a) 1,2-ethanedithiol or 1,3-propanedithiol, p-TsOH, toluene, reflux.
Our general route to ACK1 pyrrolopyrimidine inhibitors is
References and notes
shown in Scheme 1. After palladium-catalyzed pyrrolopyrimidine
formation as described above, N-monoalkylation of the 4-amino
group of amine 48 was achieved by stepwise acylation and reduc-
tion to give the N-alkylated product 49. Subsequent transforma-
tion of the C-6 triethylsilyl group of 49 into the corresponding
1. (a) Manser, E.; Leung, T.; Salihuddin, H.; Tan, L.; Lim, L. Nature 1993, 363, 364;
(b) Yang, W.; Cerione, R. A. J. Biol. Chem. 1997, 272, 24819; (c) Yokoyama, N.;
Miller, W. T. Methods Enzymol. 2006, 18, 250; (d) Urena, J. M.; La Torre, A.;
Martinez, A.; Lowenstein, E.; Franco, N.; Winsky-Sommerer, R.; Fontana, X.;
Casaroli-Marano, R.; Ibanez-Sabio, M. A.; Pascual, M.; Del Rio, J. A.; DeLecea, L.;
Soriano, E. J. J. Comp. Neurol. 2005, 490, 119; (e) Han, W.; Rhee, H. I.; Cho, J. W.;
Ku, M. S.; Song, P. S.; Wang, M. H. Biochem. Biophys. Res. Commun. 2005, 330,
887; (f) Ahmed, I.; Calle, Y.; Sayed, M. A.; Kamal, P. R.; Manser, E.; Meiners, S.;
Nur-E-Kamal, A. Biochem. Biophys. Res. Commun. 2004, 314, 571; (g) Yokoyama,
N.; Miller, W. T. J. Biol. Chem. 2003, 278, 47713; (h) Erickson, J. W.; Cerione, R. A.
Curr. Opin. Cell Biol. 2001, 13, 153; (i) Kiyono, M.; Kato, J.; Kataoka, T.; Kaziro, Y.;
Satoh, T. J. J. Biol. Chem. 2000, 275, 29788; (j) Prieto-Echagüe, V.; Gucwa, A.;
Craddock, B. P.; Brown, D. A.; Miller, W. T. J. Biol. Chem. 2010, 285, 10605; (k)
Prieto-Echagüe, V.; Miller, W. T. J. Signal. Trans. 2011, 2011. Article ID 742372.
2. van der Horst, E. H.; Degenhardt, Y. Y.; Strelow, A.; Slavin, A.; Chinn, L.; Orf, J.;
Rong, M.; Li, S.; See, L.-H.; Nguyen, K. Q. C.; Hoey, T.; Wesche, H.; Powers, S. Proc
Natl Acad Sci U.S.A. 2005, 102, 15901.
3. (a) Mahajan, N. P.; Whang, Y. E.; Mohler, J. L.; Earp, H. S. Cancer Res. 2005, 65,
10514; (b) Mahajan, N. P.; Liu, Y.; Majumder, S.; Warren, M. R.; Parker, C. E.;
Mohler, J. L.; Earp, H. S.; Whang, Y. E. Proc Natl Acad Sci U.S.A. 2007, 104, 8438;
(c) Mahajan, K.; Challa, S.; Coppola, D.; Lawrence, H.; Luo, Y.; Gevariya, H.; Zhu,
W.; Chen, Y. A.; Lawrence, N. J.; Mahajan, N. P. Prostate 2010, 70, 1274.
4. Kato-Stankiewicz, J.; Ueda, S.; Kataoka, T.; Kaziro, Y.; Satoh, T. Biochem. Biophys.
Res. Commun. 2001, 284, 470.
5. Lougheed, J. C.; Chen, R.-H.; Mak, P.; Scout, T. J. J. Biol. Chem. 2004, 279, 44039.
6. (a) Farthing, C. N.; Faulder, P.; Frenkel, A. D.; Harrison, M. J.; Jiao, X.-Y.; Kayser,
F.; Kopecky, D. J.; Liu, J.-Q.; Lively, S. E.; Sharma, R.; Shuttleworth, S. J. U.S.
Patent 7,358,250, 2008.; (b) DiMauro, E. F.; Newcomb, J.; Nunes, J. J.; Bemis, J.
E.; Boucher, C.; Buchanan, J. L.; Buckner, W. H.; Cheng, A.; Faust, T.; Hsieh, F.;
Huang, X.; Lee, J. H.; Marshall, T. L.; Martin, M. W.; McGowan, D. C.; Schneider,
S.; Turci, S. M.; White, R. D.; Zhu, X. Bioorg. Med. Chem. Lett. 2007, 17, 2305; (c)
Nunes, J. J.; Martin, M. W.; White, R.; McGowan, D.; Bemis, J. E.; Kayser, F.; Fu,
J.-S.; Liu, J.-Q.; Jiao, X.-Y. U.S. Patent 7,674,907 B2, 2010.; (d) Coumar, M. S.;
Tsai, M.-T.; Chu, C.-Y.; Uang, B.-J.; Lin, W.-H.; Chang, C.-Y.; Chang, T.-Y.; Leou, J.-
S.; Teng, C.-H.; Wu, J.-S.; Fang, M.-Y.; Chen, C.-H.; Hsu, J. T. A.; Wu, S.-Y.; Chao,
Y.-S.; Hsieh, H.-P. ChemMedChem 2010, 5, 255.
iodide followed by
a Suzuki coupling with an appropriate
arylboronic acid provided the pyrrolopyrimidine analogs listed
in Tables 1–3.
Many of the furanopyrimidine analogs with alkoxy substituents
attached to the 4-position of the 6-phenyl ring that are listed in Ta-
ble 1 and Table 3 were prepared by the sequence shown in
Scheme 2. Specifically, condensation of acetophenone 5014 with
malononitrile afforded furan 51 which was further transformed
into furanopyrimidine 52 by exposure to refluxing formic acid.
Subsequent chlorination, demethylation and N-alkylation with an
appropriate amine provided amine 54, which was then O-alkylated
with an appropriate alkyl bromide in the presence of cesium car-
bonate to generate the target molecules. Note that 1,3-dithiolane
derivatives 35–37 and 41 were generated from 1,1-dimethylacetal
intermediate 55 by treatment with either 1,2-ethanedithiol or 1,3-
propanedithiol and p-toluenesulfonic acid in refluxing toluene
6a,c
(Scheme 3).
In conclusion, two novel series of furo[2,3-d]pyrimidin4-amines
and 7H-pyrrolo[2,3-d]pyrimidin-4-amines which exhibit potent
in vitro inhibitor activity against ACK1 have been identified and
evaluated. 1,3-Dithiolane-substituted pyrrolopyrimidine 37 dis-
plays excellent ACK1 cellular inhibition, good kinase selectivity,
and a suitable in vitro metabolic profile. Unfortunately, the phar-
macokinetic profile of 37 was poor and prevented this inhibitor
from being further evaluated in tumor xenograft studies.
7. (a) Xiao, S.-H.; Farrelly, E.; Anzola, J.; Crawford, D.; Jiao, X.-Y.; Liu, J.-Q.; Ayres,
M.; Li, S.; Huang, L.; Sharma, R.; Kayser, F.; Wesche, H.; Young, S. W. Anal.