C O M M U N I C A T I O N S
Table 1. Catalytic Addition of Terminal Alkynes to Carbodiimidesa
demonstrate that an amidinate unit, though being often used as an
ancillary ligand for various organometallic complexes, can itself
participate in a catalytic reaction under appropriate conditions.
Acknowledgment. This work was partly supported by a Grant-
in-Aid for Scientific Research on Priority Areas (No. 14078224,
“Reaction Control of Dynamic Complexes”) from the Ministry of
Education, Culture, Sports, Science and Technology of Japan and
by the Natural Science Foundation of China (20328201).
temp
C)
time
(h)
yieldb
(%)
entry
R
R′
cat.
solvent
(
°
Supporting Information Available: Experimental details, X-ray
data for 3, 4g, and 4i, and scanned NMR spectra of all products (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
1a C6D6
80
80
80
3
1
1
4a (98)c
4a (>99)c
4a (98)c
1a THF-d8
1b THF-d8
1a THF-d8
1c THF-d8
1d THF-d8
80 0.5 4a (93)c
80 0.5 4a (84)c
80 0.5 4a (76)c
References
t-Bu 1a toluene 110
Cy 1a THF 80
t-Bu 1a toluene 110
Cy
i-Pr
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
4b (94)
4c (95)
4d (94)
4e (96)
4f (96)
4g (95)
4h (93)
4i (97)
4j (94)
4k (97)
4l (97)
4m (95)
4n (98)
4o (98)
4p (70)
(1) Review: Barker, J.; Kilner, M. Coord. Chem. ReV. 1994, 133, 219-300.
(2) For examples of main group metal amidinate complexes, see: (a) Rowley,
C. N.; DiLabio, G. A.; Barry, S. T. Inorg. Chem. 2005, 44, 1983-1991.
(b) Foley, S. R.; Zhou, Y.; Yap, G. P. A.; Richeson, D. S. Inorg. Chem.
2000, 39, 924-929. (c) Dagorne, S.; Guzei, I. A.; Coles, M. P.; Jordan,
R. F. J. Am. Chem. Soc. 2000, 122, 274-289. (d) Coles, M. P.; Swenson,
D. C.; Jordan, R. F. Organometallics 1998, 17, 4042-4048. (e) Kennedy,
A. R.; Mulvey, R. E.; Bowlings, R. B. J. Am. Chem. Soc. 1998, 120,
7816-7824.
(3) For examples of transition metal amidinate complexes, see: (a) van
Meerendonk, W. J.; Schro¨der, K.; Brussee, E. A. C.; Meetsma, A.; Hessen,
B.; Teuben, J. H. Eur. J. Inorg. Chem. 2003, 427-432. (b) Keaton, R. J.;
Jayaratne, K. C.; Henningsen, D. A.; Koterwas, L. A.; Sita, L. R. J. Am.
Chem. Soc. 2001, 123, 6197-6198. (c) Kondo, H.; Yamaguchi, Y.;
Nagashima, H. J. Am. Chem. Soc. 2001, 123, 500-501. (d) Kondo, H.;
Yamaguchi, Y.; Nagashima, H. Chem. Commun. 2000, 1075-1076. (e)
Do¨hler, T.; Go¨rls, H.; Walther, D. Chem. Commun. 2000, 945-946. (f)
Yamaguchi, Y.; Nagashima, H. Organometallics 2000, 19, 725-727. (g)
Koterwas, L. A.; Fettinger, J. C.; Sita, L. R. Organometallics 1999, 18,
4183-4190. (h) Whitener, G. D.; Hagadorn, J. R.; Arnold, J. J. Chem.
Soc., Dalton Trans. 1999, 1249-1255. (i) Averbuj, C.; Eisen, M. S. J.
Am. Chem. Soc. 1999, 121, 8755-8759. (j) Decker, J. M.; Geib, S. J.;
Meyer, T. Y. Organometallics 1999, 18, 4417-4420.
4-MeC6H4
4-CF3C6H4
4-MeOC6H4
4-ClC6H4
4-BrC6H4
2-ClC6H4
2-BrC6H4
2-MeC6H4
3-MeC6H4
4-F-3-MeC6H3 i-Pr
3-Py
2-Py
CH3(CH2)4
1a THF
1a THF
80
80
t-Bu 1a toluene 110
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
1a THF
1a THF
1a THF
1a THF
1a THF
1a THF
1a THF
1a THF
80
80
80
80
80
80
80
80
i-Pr
Cy
i-Pr
1a toluene 110
a Conditions: terminal alkynes, 2.07 mmol; carbodiimides, 2.01 mmol;
catalyst, 0.06 mmol; solvent, 5 mL, unless otherwise noted. b Isolated yield.
c Conditions: terminal alkynes, 0.35 mmol; carbodiimides, 0.34 mmol;
catalyst, 0.01 mmol. Yields were determined by 1H NMR using 1,3,5-
trimethylbenzene as an internal standard.
(4) For examples of lanthanide amidinate complexes, see: (a) Bambirra, S.;
Bouwkamp, M. W.; Meetsma, A.; Hessen, B. J. Am. Chem. Soc. 2004,
126, 9182-9183. (b) Deng, M.; Yao, Y.; Zhang, Y.; Shen, Q. Chem.
Commun. 2004, 2742-2743. (c) Villiers, C.; Thue´ry, P.; Ephritikhine,
M. Eur. J. Inorg. Chem. 2004, 4624-4632. (d) Richter, J.; Feiling, J.;
Schmidt, H.-G.; Noltemeyer, M.; Bru¨ser, W.; Edelmann, F. T. Z. Anorg.
Allg. Chem. 2004, 630, 1269-1275. (e) Bambirra, S.; Leusen, D. v.;
Meetsma, A.; Hessen, B.; Teuben, J. H. Chem. Commun. 2003, 522-
523. (f) Zhang, J.; Ruan, R.; Shao, Z.; Cai, R.; Weng, L.; Zhou, X.
Organometallics 2002, 21, 1420-1424. (g) Luo, Y.; Yao, Y.; Shen, Q.;
Sun, J.; Weng, L. J. Organomet. Chem. 2002, 662, 144-149. (h) Bambirra,
S.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organometallics 2001, 20,
782-785. (i) Aubrecht, K. B.; Chang, K.; Hillmyer, M. A.; Tolman, W.
B. J. Polym. Sci. A 2001, 39, 284-293. (j) Bambirra, S.; Brandsma, M.
J. R.; Brussee, E. A. C.; Meetsma, A.; Hessen, B.; Teuben, J. H.
Organometallics 2000, 19, 3197-3204. (k) Doyle, D.; Gun’ko, Y. K.;
Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 2000, 4093-
4097. (l) Schmidt, J. A. R.; Arnold, J. Chem. Commun. 1999, 2149-
2150. (m) Kincaid, K.; Gerlach, C. P.; Giesbrecht, G. R.; Hagadorn, J.
R.; Whitener, G. D.; Shafir, A.; Arnold, J. Organometallics 1999, 18,
5360-5366. (n) Duchateau, R.; Wee, C. T. v.; Teuben, J. H. Organo-
metallics 1996, 15, 2291-2302. (o) Hagadorn, J. R.; Arnold, J. Organo-
metallics 1996, 15, 984-991. (p) Duchateau, R.; Wee, C. T. v.; Meetsma,
A.; Teuben, J. H. J. Am. Chem. Soc. 1993, 115, 4931-4932.
Scheme 2. A Possible Mechanism of Catalytic Addition of
Terminal Alkynes to Carbodiimides
A catalytic cycle for the present cross-coupling reaction is shown
in Scheme 2. The acid-base reaction between a half-sandwich rare
earth metal alkyl and a terminal alkyne should yield straightfor-
wardly an alkynide species such as A.8 Nucleophilic addition of
the alkynide species to a carbodiimide would afford the amidinate
species B, which on abstraction of a proton from another molecule
of alkyne would yield the corresponding amidine and regenerate
the alkynide A. The isolation of 3 and its reaction with phenyl-
acetylene to give 2 and 4b (see Scheme 1) strongly support this
mechanism.
(5) Although formation of propiolamidines by hydrolysis of alkali metal
propiolamidates was reported, the spectral data provided could not be
unambiguously assigned to the claimed amidines. See: Fujita, H.; Endo,
R.; Aoyama, A.; Ichii, T. Bull. Chem. Soc. Jpn. 1972, 45, 1846-1852. It
is now rather skeptical that the moisture-sensitive propiolamidines could
survive the given hydrolysis conditions. Under similar conditions, we
obtained an amide product rather than an amidine. See Supporting
Information for more details.
(6) It was previously claimed that addition of a terminal alkyne to a
carbodiimide was achieved in the presence of Co2(CO)8/H4Ru4(CO)12
.
However, the spectral data provided for the product were obviously
indicative of an amide, but were mistakenly assigned to an amidine. See:
Schmidt, G. F.; Su¨ss-Fink, G. J. Organomet. Chem. 1988, 356, 207-
211. See also Supporting Information for more details.
In summary, the catalytic addition of terminal alkynes to
carbodiimides has been achieved for the first time by use of half-
sandwich rare earth metal complexes as a catalyst, which offers a
straightforward, atom-economic route to N,N′-disubstituted
propiolamidines, a new family of amidines that were difficult to
access by other means. Moreover, the results observed in this work
(7) (a) Boyd, G. V. In The Chemistry of Amidines and Imidates; Patai, S.,
Rappoport, Z., Eds.; Wiley: New York, 1991; Vol. 2, Chapter 8. (b)
Greenhill, J. V.; Lue, P. Prog. Med. Chem. 1993, 30, 203-326.
(8) (a) Nishiura, M.; Hou, Z.; Wakatsuki, Y.; Yamaki, T.; Miyamoto, T. J.
Am. Chem. Soc. 2003, 125, 1184-1185. (b) Nishiura, M.; Hou, Z. J. Mol.
Catal. A 2004, 213, 101-106.
JA0560027
9
J. AM. CHEM. SOC. VOL. 127, NO. 48, 2005 16789