Tricyclic 1,3-Oxazin-4-ones
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 26 8287
(41) Gu¨tschow, M.; Kuerschner, L.; Pietsch, M.; Ambroz˘ ak, A.;
Neumann, U.; Gu¨nther, R.; Hofmann, H.-J. Inhibition of cathe-
psin G by 2-amino-3,1-benzoxazin-4-ones: kinetic investigations
and docking studies. Arch. Biochem. Biophys. 2002, 402, 180-
191.
(42) Zscho¨rnig, O.; Pietsch, M.; Su¨ss, R.; Schiller, J.; Gu¨tschow, M.
Cholesterol esterase action on human high-density lipoproteins
and inhibition studies: detection by MALDI-TOF MS. J. Lipid
Res. 2005, 46, 803-811.
(43) Soreq, H.; Seidman, S. Acetylcholinesterase - new roles for an
old actor. Nat. Rev. Neurosci. 2001, 2, 294-302.
(44) Quinn, D. M. Acetylcholinesterase: enzyme structure, reaction
dynamics, and virtual transition states. Chem. Rev. 1987, 87,
955-979.
(45) Massoulie´, J. The origin of the molecular diversity and functional
anchoring of cholinesterases. Neurosignals 2002, 11, 130-143.
(46) Silman, I.; Sussman, J. L. Acetylcholinesterase: ‘classical’ and
‘nonclassical’ functions and pharmacology. Curr. Opin. Phar-
macol. 2005, 5, 293-302.
(47) Layer P. G.; Weikert, T.; Alber, R. Cholinesterases regulate
neurite growth of chick nerve cells in vitro by means of a non-
enzymatic mechanism. Cell Tissue Res. 1993, 273, 219-226.
(48) Grisaru, D.; Sternfeld, M.; Eldor, A.; Glick, D.; Soreq, H.
Structural roles of acetylcholinesterase variants in biology and
pathology. Eur. J. Biochem. 1999, 264, 672-686.
(49) Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. Beta-
amyloid aggregation induced by human acetylcholinesterase:
inhibition studies. Biochem. Pharmacol. 2003, 65, 407-416.
(50) Alvarez, A.; Opazo, C.; Alarcon, R.; Garrido, J.; Inestrosa, N. C.
Acetylcholinesterase promotes the aggregation of amyloid-beta-
peptide fragments by forming a complex with the growing fibrils.
J. Mol. Biol. 1997, 272, 348-361.
(51) Rees, T.; Hammond, P. I.; Soreq, H.; Younkin, S.; Brimijoin, S.
Acetylcholinesterase promotes beta-amyloid plaques in cerebral
cortex. Neurobiol. Aging 2003, 24, 777-787.
(52) Chaco´n, M. A.; Reyes; A. E.; Inestrosa, N. C. Acetylcholinesterase
induces neuronal cell loss, astrocyte hypertrophy and behavioral
deficits in mammalian hippocampus. J. Neurochem. 2003, 87,
195-204.
(53) Alvarez, A.; Alarcon, R.; Opazo, C.; Campos, E. O.; Munoz, F.
J.; Calderon, F. H.; Dajas, F.; Gentry, M. K.; Doctor, B. P.; De
Mello, F. G.; Inestrosa, N. C. Stable complexes involving ace-
tylcholinesterase and amyloid-beta peptide change the biochemi-
cal properties of the enzyme and increase the neurotoxicity of
Alzheimer’s fibrils. J. Neurosci. 1998, 18, 3213-3223.
(54) Reyes, A. E.; Chaco´n, M. A.; Dinamarca, M. C.; Cerpa, W.;
Morgan, C.; Inestrosa, N. C. Acetylcholinesterase-Aâ complexes
are more toxic than Aâ fibrils in rat hippocampus. Am. J. Pathol.
2004, 164, 2163-2174.
(55) Carson, K. A.; Geula, C.; Mesulam, M.-M. Electron microscopic
localization of cholinesterase activity in Alzheimer brain tissue.
Brain Res. 1991, 540, 204-208.
(56) Wright, C. I.; Geula, C.; Mesulam, M.-M. Protease inhibitors and
indoleamines selectively inhibit cholinesterases in the histo-
pathologic structures of Alzheimer disease. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 686-686.
(57) Inestrosa, N. C.; Alarcon, R. Molecular interactions of acetyl-
cholinesterase with senile plaques. J. Physiol. (Paris) 1998, 92,
341-344.
(58) Selkoe, D. J. Alzheimer’s disease: genes, proteines, and therapy.
Phys. Rev. 2001, 81, 741-766.
(59) Inestrosa, N. C.; Sagal, J. P.; Colombres, M. Acetylcholinesterase
interactions with Alzheimer amyloid â. Subcell Biochem. 2005,
38, 299-317.
(60) Recanatini, M.; Valenti, P. Acetylcholinesterase inhibitors as a
starting point towards improved Alzheimer’s disease therapeu-
tics. Curr. Pharm. Des. 2004, 10, 3157-3166.
(61) Benzi, G.; Moretti, A. Is there a rationale for the use of
acetylcholinesterase inhibitors in the therapy of Alzheimer’s
disease? Eur. J. Pharmacol. 1998, 346, 1-13.
(62) Colombres, M.; Sagal, J. P.; Inestrosa, N. C. An overview of the
current and novel drugs for Alzheimer’s disease with particular
reference to anti-cholinesterase compounds. Curr. Pharm. Des.
2004, 10, 3121-3130.
(63) Rees, T. M.; Brimijoin, S. the role of acetylcholinesterase in the
pathogenesis of Alzheimer’s disease. Drugs Today (Barc) 2003,
39, 75-83.
(64) Ibach, B.; Haen, E. Acetylcholinesterase inhibition in Alzheimer’s
disease. Curr. Pharm. Des. 2004, 10, 231-251.
(65) Mun˜oz-Muriedas, J.; Lopez, J. M.; Orozco, M.; Luque, F. J.
Molecular modelling approaches to the design of acetylcholinest-
erase inhibitors: new challenges for the treatment of Alzheimer’s
disease. Curr. Pharm. Des. 2004, 10, 3131-3140.
(66) Inestrosa, N. C.; Alvarez, A.; Perez, C. A.; Moreno R. D.; Vicente,
M.; Linker, C.; Casanueva, O. I.; Soto, C.; Garrido, J. Acetyl-
cholinesterase accelerates assembly of amyloid-beta-peptides
into Alzheimer’s fibrils: possible role of the peripheral site of
the enzyme. Neuron 1996, 16, 881-891.
(67) Reyes, A. E.; Perez, D. R.; Alvarez, A. Garrido, J.; Gentry, M.
K.; Doctor, B. P.; Inestrosa, N. C. A monoclonal antibody against
acetylcholinesterase inhibits the formations of amyloid fibrils
induced by the enzyme. Biochem. Biophys. Res. Commun. 1997,
232, 652-655.
(68) Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.;
Toker, L.; Silman, I. Atomic structure of acetylcholinesterase
from Torpedo californica: a prototypic acetylcholine-binding
protein. Science 1991, 253, 872-879.
(69) Harel, M.; Schalk, I.; Ehret-Sabatier, L.; Bouet, F.; Goeldner,
M.; Hirth, C.; Axelsen, P. H.; Silman, I.; Sussman, J. L.
Quaternary ligand binding to aromatic residues in the active-
site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. U.S.A.
1993, 90, 9031-9035.
(70) Lin, G.; Chen, G.-H.; Yeh, S.-C.; Lu, C.-P. Probing the peripheral
anionic site of acetycholinesterase with quantitative structure
activity relationships for inhibition by biphenyl-4-acyoxylate-
4′-N-butylcarbamates. J. Biochem. Mol. Toxicol. 2005, 19, 234-
243.
(71) Piazzi, L.; Rampa, A.; Bisi, A.; Gobbi, S.; Belluti, F.; Cavalli, A.;
Bartolini, M.; Andrisano, V.; Valenti, P.; Recanatini, M. 3-
(4-{[Benzyl(methyl)amino]methyl}phenyl)-6,7-dimethoxy-2H-2-
chromenone (AP2238) inhibits both acetylcholinesterase and
acetylcholinesterase-induced â-amyloid aggregation: a dual
function lead for Alzheimer’s disease therapy. J. Med. Chem.
2003, 46, 2279-2282.
(72) Gewald, K.; Schinke, E.; Bo¨ttcher, H. 2-Aminothiophenes from
methylene-active nitriles, carbonyl compounds, and sulfur.
Chem. Ber. 1966, 99, 94-100.
(73) Sabnis, R. W. The Gewald synthesis. Sulfur Rep. 1994, 16, 1-17.
(74) Hallenbach, W.; Lindel, H.; Berschauer, F.; Scheer, M.; de Jong,
A. Aminothienooxazinones as animal growth promotors. Ger.
Offen. DE 3,540,377; Chem. Abstr. 1987, 107, 77818h.
(75) Player, M. R.; Sowell, J. W., Sr. Preparation of fused 1,3-oxazine-
2,4-diones as potential antitumor agents. J. Heterocycl. Chem.
1995, 32, 1537-1540.
(76) Leistner, S.; Gu¨tschow, M.; Wagner, G.; Grupe, R.; Bo¨hme, B.
One-step synthesis of 2-aminothieno[2,3-d][1,3]thiazin-4-ones in
some cases 5,6-anellated from ethyl 2-benzoylthioureidothiophene-
3-carboxylates and evaluation of their anti-allergy activity.
Pharmazie 1988, 43, 466-470.
(77) Leistner, S.; Gu¨tschow, M.; Wagner, G. The facile synthesis
of 2-aminothieno[2,3-d][1,3]thiazin-4-ones, in some cases 5,6-
anellated. Synthesis 1987, 5, 466-470.
(78) Hegarty, A. F.; Bruice, T. C. Acyl transfer reactions from and to
the ureido functional group. I. The mechanisms of hydrolysis of
an O-acylisourea (2-amino-4,5-benzo-6-oxo-1,3-oxazine. J. Am.
Chem. Soc. 1970, 92, 6561-6567.
(79) Neumann, U.; Gu¨tschow, M. 3,1-Benzothiazin-4-ones and 3,1-
benzoxazin-4-ones: highly different activities in chymotrypsin
inactivation. Bioorg. Chem. 1995, 23, 72-88.
(80) Segel, I. H. Enzyme kinetics; Wiley and Sons: New York, 1993;
pp 161-226.
(81) Baici, A. The specific velocity plot. A graphical method for
determining inhibition parameters for both linear and hyperbolic
enzyme inhibitors. Eur. J. Biochem. 1981, 119, 9-14.
(82) Cornish-Bowden, A. Fundamentals of enzyme kinetics, 3rd ed.;
Portland Press: London, 2004; pp 113-144.
(83) Wilkinson, G. N. Statistical estimations in enzyme kinetics.
Biochem. J. 1961, 80, 324-332.
(84) Dowd, J. E.; Riggs, D. S. A comparison of estimates of Michaelis-
Menten kinetic constants from various linear transformations.
J. Biol. Chem. 1965, 240, 863-869.
(85) Nochi, S.; Asakawa, N.; Sato, T. Kinetic study on the inhibition
of acetylcholinesterase by 1-benzyl-4-[(5,6-dimethoxy-1-indanon)-
2-yl]methylpiperidine hydrochloride (E2020). Biol. Pharm. Bull.
1995, 18, 1145-1147.
(86) Bru¨hlmann, C.; Marston, M.; Hostettmann, K.; Carrupt, P.-A.;
Testa, B. Screening of non-alkaloidal natural compounds as
acetylcholinesterase inhibitors. Chem. Biodivers. 2004, 1, 819-
829.
(87) Greenblatt, H. M.; Kryger, G.; Lewis, T.; Silman, I.; Sussman,
J. L. Structure of acetylcholinesterase complexed with (-)-
galanthamine at 2.3 Å resolution. FEBS Lett. 1999, 463, 321-
326.
(88) Bartolucci, C.; Perola, E.; Pilger, C.; Fels, G.; Lamba, D. Three-
dimensional structure of a complex of galanthamine (Nivalin)
with acetylcholinesterase from Torpedo californica: implications
for the design of new anti-Alzheimer drugs. Proteins 2001, 42,
182-191.
(89) Doucet-Personeni, C.; Bentley, P. D.; Fletcher, R. J.; Kinkaid,
A.; Kryger, G.; Pirard, B.; Taylor, A.; Taylor, R.; Taylor, J.; Viner,
R.; Silman, I.; Sussman, J. L.; Greenblatt, H. M.; Lewis, T. A
structure-based design approach to the development of novel,
reversible AChE inhibitors. J. Med. Chem. 2001, 44, 3203-3215.