10.1002/anie.202104871
Angewandte Chemie International Edition
COMMUNICATION
aReactions run in 0.50 mmol scale in 2.5 mL solvent. Reactions for alkylketones (products 4-22, 34-36) run in THF at 80 °C while those for
arylketones (products 26-33, 39 and 42) run in MeCN 60 °C for 6 h. bReaction run under MeCN conditions. cReactions run under THF conditions
at 60 °C for 6 h. d20 mol % NiBr2•DME. Alkenyl triflate E/Z: 2:1. eA mixture of 4 diastereomers based on 13C NMR (see SI for details).
[4]
a) T. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura,
B. D. Maxwell, M. D. Eastgate, P. S. Baran, Science 2016, 352, 801-805;
b) L. Zhang, G. J. Lovinger, E. K. Edelstein, A. A. Szymaniak, M. P.
Chierchia, J. P. Morken, Science 2016, 351, 70-74; c) M. Nakamura, A.
Hirai, E. Nakamura, J. Am. Chem. Soc. 2000, 122, 978-979; d) S. R.
Neufeldt, M. S. Sanford, Org. Lett. 2013, 15, 46-49.
Scheme 3. Carbonyl coordination effect
[5]
For
selected
examples
on
three-component
alkene
dicarbofunctionalization, see: a) P. Basnet, R. K. Dhungana, S. Thapa,
B. Shrestha, S. Kc, J. M. Sears, R. Giri, J. Am. Chem. Soc. 2018, 140,
7782-7786; b) R. K. Dhungana, S. Kc, P. Basnet, V. Aryal, L. J. Chesley,
R. Giri, ACS Catal. 2019, 9, 10887-10893; c) J. Jeon, H. Ryu, C. Lee, D.
Cho, M.-H. Baik, S. Hong, J. Am. Chem. Soc. 2019, 141, 10048-10059;
d) L. Liao, R. Jana, K. B. Urkalan, M. S. Sigman, J. Am. Chem. Soc. 2011,
133, 5784-5787; e) V. Saini, M. S. Sigman, J. Am. Chem. Soc. 2012, 134,
11372-11375; f) M. Orlandi, M. J. Hilton, E. Yamamoto, F. D. Toste, M.
S. Sigman, J. Am. Chem. Soc. 2017, 139, 12688-12695; g) H.-M. Huang,
P. Bellotti, P. M. Pflüger, J. L. Schwarz, B. Heidrich, F. Glorius, J. Am.
Chem. Soc. 2020, 142, 10173-10183; h) Y. Li, H. Wei, D. Wu, Z. Li, W.
Wang, G. Yin, ACS Catal. 2020, 10, 4888-4894.
Scheme 4. Carbonyl steric effect
[6]
[7]
a) V. H. Menezes da Silva, A. A. C. Braga, T. R. Cundari,
Organometallics 2016, 35, 3170-3181; b) A. N. Campbell, M. R. Gagné,
Organometallics 2007, 26, 2788-2790; c) P. Veerakumar, P.
Thanasekaran, K.-L. Lu, K.-C. Lin, S. Rajagopal, ACS Sustain. Chem.
Eng. 2017, 5, 8475-8490.
In summary, we report a nickel-catalyzed reaction, which addresses
the issue of -H elimination in alkene difunctionalization in carbonyl-
assisted alkene dicarbofunctionalization reaction. The success of the
reaction relied upon the use of a combination of 5-chloro-8-
hydroxyquinoline and Ni(cod)2 in the presence of LiOtBu. This
catalysis enabled us to difunctionalize unactivated ,-alkenes in
ketones with alkenyl triflates and arylboronic esters. The reaction
proceeded with a wide range of cyclic, acyclic, endocyclic and
exocyclic alkenyl ketones along with electron-rich and electron-
deficient arylboronate esters, and cyclic and acyclic alkenyl triflates.
Control experiments with a substrate lacking a carbonyl group and
with a sterically hindered carbonyl group indicated that the carbonyl
coordination was required for the reaction to proceed.
For alkene dicarbofunctionalization by cyclization/coupling, see: a) B.
Burns, R. Grigg, P. Ratananukul, V. Sridharan, P. Stevenson, S.
Sukirthalingam, T. Worakun, Tetrahedron Lett. 1988, 29, 5565-5568; b)
P. Fretwell, R. Grigg, J. M. Sansano, V. Sridharan, S. Sukirthalingam, D.
Wilson, J. Redpath, Tetrahedron 2000, 56, 7525-7539; c) R. Grigg, J.
Sansano, V. Santhakumar, V. Sridharan, R. Thangavelanthum, M.
Thornton-Pett, D. Wilson, Tetrahedron 1997, 53, 11803-11826; d) R.
Grigg, E. Mariani, V. Sridharan, Tetrahedron Lett. 2001, 42, 8677-8680;
e) J. E. Wilson, Tetrahedron Lett. 2012, 53, 2308-2311; f) P. Fan, Y. Lan,
C. Zhang, C. Wang, J. Am. Chem. Soc. 2020, 142, 2180-2186; g) Y. Jin,
C. Wang, Angew. Chem. Int. Ed. 2019, 58, 6722-6726; h) K. Wang, Z.
Ding, Z. Zhou, W. Kong, J. Am. Chem. Soc. 2018, 140, 12364-12368; i)
L. Zhou, S. Li, B. Xu, D. Ji, L. Wu, Y. Liu, Z.-M. Zhang, J. Zhang, Angew.
Chem. Int. Ed. 2020, 59, 2769-2775; j) A. D. Marchese, E. M. Larin, B.
Mirabi, M. Lautens, Acc. Chem. Res. 2020, 53, 1605-1619.
Acknowledgements
We gratefully acknowledge the NIH NIGMS (R35GM133438) and The
Pennsylvania State University for support of this work, and the PSU
NMR facility for NMR support. We thank Dr. Christy George for help
with stereochemistry determination of compound 43 by NMR.
[8]
a) M. Kosugi, H. Tamura, H. Sano, T. Migita, Tetrahedron 1989, 45, 961-
967; b) K. Masanori, K. Tomoyuki, O. Hiroshi, M. Toshihiko, Bull. Chem.
Soc. Jpn. 1993, 66, 3522-3524; c) M. Kosugi, H. Tamura, H. Sano, T.
Migita, Chem. Lett. 1987, 16, 193-194; d) M. Catellani, G. P. Chiusoli, S.
Concari, Tetrahedron 1989, 45, 5263-5268; e) S.-K. Kang, J.-S. Kim, S.-
C. Choi, K.-H. Lim, Synthesis 1998, 1998, 1249-1251; f) K. M. Shaulis,
B. L. Hoskin, J. R. Townsend, F. E. Goodson, C. D. Incarvito, A. L.
Rheingold, J. Org. Chem. 2002, 67, 5860-5863; g) A. A. Kadam, T. L.
Metz, Y. Qian, L. M. Stanley, ACS Catal. 2019, 9, 5651-5656.
Keywords: Alkenyl ketone • alkenylarylation •
dicarbofunctionalization • nickel-catalyzed • 8-hydroxyquinoline
[9]
For examples of alkene dicarbofunctionalization without a coordinating
group, see: a) A. García-Domínguez, Z. Li, C. Nevado, J. Am. Chem.
Soc. 2017, 139, 6835-6838; b) P. Gao, L.-A. Chen, M. K. Brown, J. Am.
Chem. Soc. 2018, 140, 10653-10657; c) S. Kc, R. K. Dhungana, B.
Shrestha, S. Thapa, N. Khanal, P. Basnet, R. W. Lebrun, R. Giri, J. Am.
Chem. Soc. 2018, 140, 9801-9805; d) L. Liu, W. Lee, C. R. Youshaw, M.
Yuan, M. B. Geherty, P. Y. Zavalij, O. Gutierrez, Chem. Sci. 2020, 11,
8301-8305; e) D. Anthony, Q. Lin, J. Baudet, T. Diao, Angew. Chem. Int.
Ed. 2019, 58, 3198-3202; f) M. W. Campbell, J. S. Compton, C. B. Kelly,
G. A. Molander, J. Am. Chem. Soc. 2019, 141, 20069-20078; g) W.
Zhang, S. Lin, J. Am. Chem. Soc. 2020, 142, 20661-20670; h) J. Jeon,
Y.-T. He, S. Shin, S. Hong, Angew. Chem. Int. Ed. 2020, 59, 281-285; i)
K. Lee, S. Lee, N. Kim, S. Kim, S. Hong, Angew. Chem. Int. Ed. 2020,
59, 13379-13384; j) S. Sakurai, A. Matsumoto, T. Kano, K. Maruoka, J.
[1]
For reviews, see: a) R. K. Dhungana, S. KC, P. Basnet, R. Giri, Chem.
Rec. 2018, 18, 1314-1340; b) R. Giri, S. Kc, J. Org. Chem. 2018, 83,
3013-3022; c) J. Derosa, O. Apolinar, T. Kang, V. T. Tran, K. M. Engle,
Chem. Sci. 2020, 11, 4287-4296; d) S. O. Badir, G. A. Molander, Chem
2020, 6, 1327-1339; e) H.-Y. Tu, S. Zhu, F.-L. Qing, L. Chu, Synthesis
2020, 52, 1346-1356; f) X. Qi, T. Diao, ACS Catal. 2020, 10, 8542-8556;
g) A. Herath, W. Li, J. Montgomery, J. Am. Chem. Soc. 2008, 130, 469-
471; h) J. Montgomery, Acc. Chem. Res. 2000, 33, 467-473.
[2]
[3]
K. C. Nicolaou, S. Rigol, Nat. Prod. Rep. 2020.
a) S. R. Chemler, S. D. Karyakarte, Z. M. Khoder, J. Org. Chem. 2017,
82, 11311-11325; b) J. P. Wolfe, Synlett 2008, 2008, 2913-2937; c) W.
Ahmed, S. Zhang, X. Yu, X. Feng, Y. Yamamoto, M. Bao, Angew. Chem.
Int. Ed. 2019, 58, 2495-2499; d) J.-B. Peng, F.-P. Wu, D. Li, H.-Q. Geng,
X. Qi, J. Ying, X.-F. Wu, ACS Catal. 2019, 9, 2977-2983.
This article is protected by copyright. All rights reserved.