Organic & Biomolecular Chemistry
Paper
through IRC (intrinsic reaction coordinate) technique that led
directly to the target products or reactants. All computations
were performed by using the Firefly 8.1.0 program package.19
In the next step, optimized geometries were used to get
insight into the electronic structure of our target systems in
terms of natural bond orbitals (NBO).20 Bond orders quoted
are those from the Wiberg formulation21 (so-called Wiberg
bond indexes) incorporated into the NBO analysis. All compu-
tations were performed with the NBO 6.0 program,22 using the
converged wavefunctions generated by the Firefly program.
In order to obtain a more reliable evaluation on reaction
energetics, single-point calculations (for DFT-optimized geo-
metries) were performed for all minimum structures and tran-
sition states with the help of a highly-accurate single-reference
corrBrienelated method, DLPNO-CCSD(T)15 (domain-based
local pair natural orbitals coupled-cluster with single, double
and perturbative triple corrections) with the same basis sets.
This method was recently proposed by the group of Neese and
was found to be very accurate, providing accuracy comparable
with that of CCSD(T), which has the reputation of serving as a
benchmarking method. To accelerate these calculations, the
resolution-of-identity (RI) algorithm was applied using the
chain-of-sphere approach (RIJCOSX).23 All these high-level cal-
culations were carried out by using the ORCA program suite
(version 3.1.0).
and K. S. Gates, J. Am. Chem. Soc., 2005, 127, 15004;
(d) B. Ringdahl, C. Mellin, F. J. Ehlert, M. Roch, K. M. Rice
and D. J. Jenden, J. Med. Chem., 1990, 33, 281.
4 (a) N. J. Leonard and K. Jann, J. Am. Chem. Soc., 1960, 82,
6418; (b) N. J. Leonard and K. Jann, J. Am. Chem. Soc., 1962,
84, 4806; (c) N. J. Leonard and L. E. Brady, J. Org. Chem.,
1965, 30, 817.
5 (a) D.-H. Yoon, P. Kang, W. K. Lee, Y. Kim and H.-J. Ha,
Org. Lett., 2012, 14, 429; (b) S. J. Oxenford, S. P. Moore,
G. Carbone, G. Barker, P. O’Brien, M. R. Shipton, J. Gilday
and K. R. Campos, Tetrahedron: Asymmetry, 2010, 21, 1563;
(c) D. G. Piotrowska and A. E. Wróblewski, Tetrahedron,
2009, 65, 4310; (d) H. Guan, S. A. Saddoughi, A. P. Shaw
and J. R. Norton, Organometallics, 2005, 24, 6358;
(e) C. Carter, S. Fletcher and A. Nelson, Tetrahedron: Asym-
metry, 2003, 14, 1995; (f) L. Quanying, A. P. Marchington,
N. Boden and C. M. Rayner, J. Chem. Soc., Perkin Trans. 1,
1997, 511.
6 (a) Aziridines and epoxides in organic synthesis, ed.
A. K. Yudin, Wiley-VCH, Weinheim, 2006; (b) A. Padwa and
S. S. Murphree, ARKIVOC, 2006, (iii), 6; (c) G. S. Singh,
M. D’hooghe and N. De Kimpe, Chem. Rev., 2007,
107, 2080; (d) G. Callebaut, T. Meiresonne, N. De Kimpe
and S. Mangelinckx, Chem. Rev., 2014, 114, 7954;
(e) L. Degennaro, P. Trinchera and R. Luisi, Chem. Rev.,
2014, 114, 7881; (f) S. Catak, M. D’hooghe, T. Verstraelen,
K. Hemelsoet, A. Van Nieuwenhove, H.-J. Ha,
M. Waroquier, N. De Kimpe and V. Van Speybroeck, J. Org.
Chem., 2010, 75, 4530; (g) S. Stanković, M. D’hooghe,
S. Catak, H. Eum, M. Waroquier, V. Van Speybroeck,
N. De Kimpe and H.-J. Ha, Chem. Soc. Rev., 2012, 41, 643.
7 (a) H.-S. Chong, X. Sun, Y. Zhong, K. Bober, M. R. Lewis,
D. Liu, V. C. Ruthengael, I. Sin and C. S. Kang, Eur. J. Org.
Chem., 2014, 1305; (b) H.-S. Chong and Y. Chen, Org. Lett.,
2013, 15, 5912; (c) H.-S. Chong, H. A. Song, C. S. Kang,
T. Le, X. Sun, M. Dadwal, H. Lee, X. Lan, Y. Chen and
A. Dai, Chem. Commun., 2011, 47, 5584; (d) H.-S. Chong,
H. A. Song, M. Dadwal, X. Sun, I. Sin and Y. Chen, J. Org.
Chem., 2010, 75, 219.
X-ray crystal determination of (R)-5a
Crystals for structure determination were obtained by slow
evaporation of 5a from a mixture of CH2Cl2/hexanes. The struc-
ture was solved using SIR-92 and refined using Bruker
SHELXTL. Crystallographic data for 5a have been deposited
with the Cambridge Crystallographic Data Centre as sup-
plementary publication no. CCDC 999697.
References
1 T.-X. Metro, B. Duthion, D. G. Pardo and J. Cossy, Chem.
Soc. Rev., 2010, 39, 89.
2 (a) S. B. D. Jarvis and A. B. Charette, Org. Lett., 2011, 13,
3830; (b) S. Catak, M. D’hooghe, N. De Kimpe,
M. Waroquier and V. Van Speybroeck, J. Org. Chem., 2010,
75, 885; (c) S. Y. Yun, S. Catak, W. K. Lee, M. D’hooghe,
N. De Kimpe, V. Van Speybroeck, M. Waroquier, Y. Kim and
Y.-J. Ha, Chem. Commun., 2009, 2508; (d) G. L. Hamilton,
T. Kanai and F. D. Toste, J. Am. Chem. Soc., 2008, 130,
14984; (e) C. Couturier, J. Blanchet, T. Schlama and J. Zhu,
Org. Lett., 2006, 8, 2183; (f) P. O’Brien and T. D. Towers,
J. Org. Chem., 2002, 67, 304; (g) T.-H. Chuang and
8 (a) A. S. Nagle, R. N. Salvatore, B.-D. Chong and K. W. Jung,
Tetrahedron Lett., 2000, 41, 3011; (b) M. Dakanali,
G. K. Tsikalas, H. Krautscheid and H. E. Katerinopoulos,
Tetrahedron Lett., 2008, 49, 1648; (c) U. K. Wefelscheid and
S. Woodward, J. Org. Chem., 2009, 74, 2254; (d) K. Weber,
S. Kuklinski and P. Gmeiner, Org. Lett., 2000, 2, 647;
(e) M. D’hooghe, S. Catak, S. Stankovic, M. Waroquier,
Y. Kim, H.-J. Ha, V. Van Speybroeck and N. De Kimpe,
Eur. J. Org. Chem., 2010, 4920.
9 P. L. Beaulieu and D. Wernic, J. Org. Chem., 1996, 61, 3635.
K. B. Sharpless, Org. Lett., 2000, 2, 3555; (h) T. Katagiri, 10 A. J. M. Van Beijnen, R. J. M. Nolte, A. J. Naaktgeboren,
M. Takahashi, Y. Fujiwara, H. Ihara and K. Uneyama,
J. Org. Chem., 1999, 64, 7323.
J. W. Zwikker, W. Drenth and A. M. F. Hezemans, Macro-
molecules, 1983, 16, 1679.
3 (a) A. Polavarapu, J. A. Stillabower, S. G. W. Stubblefield, 11 T.-X. Métro, D. G. Pardo and J. Cossy, J. Org. Chem., 2007,
W. M. Taylor and M.-H. Baik, J. Org. Chem., 2012, 77, 5914; 72, 6556.
(b) D. M. Noll, T. M. Mason and P. S. Miller, Chem. Rev., 12 C. Douat-Casassus, K. Pulka, P. Claudon and G. Guichard,
2006, 106, 277; (c) S. Dutta, H. Abe, S. Aoyagi, C. Kibayashi
Org. Lett., 2012, 14, 3130.
This journal is © The Royal Society of Chemistry 2015
Org. Biomol. Chem.