Total Synthesis of Octalactin A
FULL PAPER
Conclusion
[1] D. M. Tapiolas, M. Roman, W. Fenical, T. J. Stout, J. Clardy, J. Am.
Chem. Soc. 1991, 113, 4682–4683.
An efficient method for the synthesis of octalactin A and its
intermediates, which include octalactin B, has been estab-
lished by enantioselective aldol reactions and a very effec-
tive lactonization using a substituted benzoic anhydride.
[2] R. D. Norcross, I. Paterson, Chem. Rev. 1995, 95, 2041–2114.
[3] K. R. Buszek, N. Sato, Y. Jeong, J. Am. Chem. Soc. 1994, 116, 5511–
5512.
[4] J. C. McWilliams, J. Clardy, J. Am. Chem. Soc. 1994, 116, 8378–8379.
[5] K. R. Buszek, N. Sato, Y. Jeong, Tetrahedron Lett. 2002, 43, 181–
184.
Through our chiral induction technology,
a systematic
method for providing chiral compounds, from both achiral
silylenolates and aldehydes by enantioselective aldol reac-
tions, has successfully been applied to the preparation of an
optically active linear precursor to the eight-membered lac-
tone and side chain of the octalactins. Furthermore, a new
method for constructing the eight-membered lactone moiety
of the octalactins has been established, that utilizes a rapid
cyclization reaction, promoted by MNBA under the influ-
ence of a catalytic amount of DMAP or DMAPO. This syn-
thetic method would be widely applicable to the creation of
various derivatives of octalactin-type antitumor agents.
[6] P. T. OꢁSullivan, W. Buhr, M. A. M. Fuhry, J. R. Harrison, J. E.
Davies, N. Feeder, D. R. Marshall, J. W. Burton, A. B. Holmes, J.
Am. Chem. Soc. 2004, 126, 2194–2207.
[7] Partial syntheses: a) K. R. Buszek, Y. Jeong, Tetrahedron Lett. 1995,
36, 7189–7192; b) M. B. Andrus, A. B. Argade, Tetrahedron Lett.
1996, 37, 5049–5052; c) M. Kodama, M. Matsushita, Y. Terada, A.
Takeuchi, S. Yoshio, Y. Fukuyama, Chem. Lett. 1997, 117–118; d) S.
Inoue, Y. Iwabuchi, H. Irie, S. Hatakeyama, Synlett 1998, 735–736;
e) J. Bach, J. Garcia, Tetrahedron Lett. 1998, 39, 6761–6764; f) other
synthetic studies: J. Bach, R. Berenguer, J. Garcia, J. Vilarrasa, Tet-
rahedron Lett. 1995, 36, 3425–3428; g) A. N. Hulme, G. E. Howells,
Tetrahedron Lett. 1997, 38, 8245–8248; h) F. Shimoma, H. Kusaka,
K. Wada, H. Azami, M. Yasunami, T. Suzuki, H. Hagiwara, M.
Ando, J. Org. Chem. 1998, 63, 920–929; i) J. R. Harrison, A. B.
Holmes, I. Collins, Synlett 1999, 972–974; j) E. A. Anderson, A. B.
Holmes, I. Collins, Tetrahedron Lett. 2000, 41, 117–121; k) G. Bluet,
J.-M. Campagne, Synlett 2000, 221–222.
Experimental Section
[8] a) I. Shiina, Y. Fukuda, T. Ishii, H. Fujisawa, T. Mukaiyama, Chem.
Lett. 1998, 831–832; b) I. Shiina, H. Fujisawa, T. Ishii, Y. Fukuda,
Heterocycles 2000, 52, 1105–1123.
General methods, detailed experimental procedures, and the spectroscop-
ic data of all compounds have been provided in the Supporting Informa-
tion.
[9] a) T. Mukaiyama, S. Kobayashi, H. Uchiro, I. Shiina, Chem. Lett.
1990, 129–132; b) S. Kobayashi, H. Uchiro, Y. Fujishita, I. Shiina, T.
Mukaiyama, J. Am. Chem. Soc. 1991, 113, 4247–4252; c) S. Kobaya-
shi, M. Furuya, A. Ohtsubo, T. Mukaiyama, Tetrahedron: Asymme-
try 1991, 2, 635–638; d) S. Kobayashi, H. Uchiro, I. Shiina, T. Mu-
kaiyama, Tetrahedron 1993, 49, 1761–1772; e) see also: T. Mukaiya-
ma, H. Uchiro, I. Shiina, S. Kobayashi, Chem. Lett. 1990, 1019–
1022; f) T. Mukaiyama, I. Shiina, S. Kobayashi, Chem. Lett. 1991,
1901–1904; g) S. Kobayashi, I. Shiina, J. Izumi, T. Mukaiyama,
Chem. Lett. 1992, 373–376; h) T. Mukaiyama, I. Shiina, J. Izumi, S.
Kobayashi, Heterocycles 1993, 35, 719–724; i) T. Mukaiyama, I.
Shiina, H. Uchiro, S. Kobayashi, Bull. Chem. Soc. Jpn. 1994, 67,
1708–1716; j) I. Shiina, R. Ibuka, Tetrahedron Lett. 2001, 42, 6303–
6306.
Typical experimental procedure for the lactonization reaction: 2-Methyl-
6-nitrobenzoic anhydride (MNBA) was purchased from Tokyo Kasei
Kogyo (TCI, M1439).
An experimental procedure is described for the preparation of lactone 7
usingMNBA with a catalytic amount of DMAP (Table 2, entry 4) : A so-
lution of 8 (53.2 mg, 94.5 mmol) in dichloromethane (1 mL) was added to
a solution of MNBA (42.8 mg, 0.124 mmol), DMAP (1.2 mg, 9.6 mmol),
and triethylamine (58.0 mg, 0.574 mmol) in dichloromethane (46.8 mL) at
room temperature. After the reaction mixture had been stirred for 13 h
at room temperature, saturated aqueous sodium hydrogencarbonate was
added at 08C. The mixture was then extracted with dichloromethane, and
the organic layer was washed with water and brine, and dried over
sodium sulfate. Filtration of the resulting mixture and evaporation of the
solvent provided the crude product, which was purified by thin-layer
chromatography to afford lactone 7 (45.8 mg, 89%) as a colorless oil.
[10] I. Shiina in Modern Aldol Reactions (Eds.: R. Mahrwald), Wiley-
VCH, Weinheim, 2004, pp. 105–165.
An experimental procedure for the preparation of both 7 and 7-dimer
(Table 2, entry 13): A solution of 8 (36.1 mg, 64.1 mmol) in dichloro-
[11] a) I. Shiina, S. Miyoshi, M. Miyashita, T. Mukaiyama, Chem. Lett.
1994, 515–518; b) I. Shiina, T. Mukaiyama, Chem. Lett. 1994, 677–
680; c) see also: K. Ishihara, M. Kubota, H. Kurihara, H. Yamamo-
to, J. Am. Chem. Soc. 1995, 117, 4473–4414; corrigendum 6639;
d) K. Ishihara, M. Kubota, H. Kurihara, H. Yamamoto, J. Org.
Chem. 1996, 61, 4560–4567.
methane (0.64 mL) was added to
a mixture of MNBA (28.7 mg,
83.4 mmol) and DMAP (47.0 mg, 0.385 mmol) at room temperature.
After the reaction mixture had been stirred for 13 h at room tempera-
ture, saturated aqueous sodium hydrogencarbonate was added at 08C.
The mixture was then extracted with dichloromethane, and the organic
layer was washed with water and brine, and dried over sodium sulfate.
After filtration of the mixture and evaporation of the solvent, the crude
product was purified by thin-layer chromatography to afford both the lac-
tone 7 (17.6 mg, 50%) and its dimer (11.1 mg, 32%) as colorless oils.
[12] I. Shiina, Tetrahedron 2004, 60, 1587–1599.
[13] a) I. Shiina, H. Iwadare, H. Sakoh, M. Hasegawa, Y. Tani, T. Mu-
kaiyama, Chem. Lett. 1998, 1–2; b) I. Shiina, K. Saitoh, I. Frꢂchard-
Ortuno, T. Mukaiyama, Chem. Lett. 1998, 3–4; c) T. Mukaiyama, I.
Shiina, H. Iwadare, M. Saitoh, T. Nishimura, N. Ohkawa, H. Sakoh,
K. Nishimura, Y. Tani, M. Hasegawa, K. Yamada, K. Saitoh, Chem.
Eur. J. 1999, 5, 121–161.
[14] Preliminarily communication for the total synthesis of octalactin B:
I. Shiina, H. Oshiumi, M. Hashizume, Y. Yamai, R. Ibuka, Tetrahe-
dron Lett. 2004, 45, 543–547.
[15] a) I. Shiina, R. Ibuka, M. Kubota, Chem. Lett. 2002, 286–287; b) I.
Shiina, M. Kubota, R. Ibuka, Tetrahedron Lett. 2002, 43, 7535–7539;
c) I. Shiina, M. Kubota, H. Oshiumi, M. Hashizume, J. Org. Chem.
2004, 69, 1822–1830; d) I. Shiina, Yuki Gosei Kagaku Kyokaishi
2005, 62, 2–17; e) see also: I. Shiina, Y. Kawakita, Tetrahedron 2004,
60, 4729–4733; f) J. Tian, N. Yamagiwa, S. Matsunaga, M. Shibasaki,
Org. Lett. 2003, 5, 3021–3024; g) M. Inoue, T. Sasaki, S. Hatano, M.
Acknowledgements
This study was partially supported by a Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Science, Sports, and Culture
(Japan). The author thanks Shin-Etsu Chemical (Japan) for kindly pro-
viding tert-butylchlorodimethylsilane as a bulk sample. The author is also
grateful to Yu-suke Kuramoto, Takashi Katoh and Yuri Komiyama for
their cooperation.
Chem. Eur. J. 2005, 11, 6601 – 6608
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6607