examples of any transition metal-catalyzed cycloadditions
with alkynyl halides, which rely on the formation of the
acetylene π-complex 4, have been reported in the literature.
In fact, to the best of our knowledge, there are only two
examples in the literature of transition metal-catalyzed
cycloadditions of alkynyl halides, a cobalt-catalyzed Pau-
son-Khand [2 + 2 + 1] cycloaddition and a ruthenium-
catalyzed [2 + 2] cycloaddition (Scheme 2).8,9 Balsells and
We have recently reported the ruthenium-catalyzed [2 + 2]
cycloadditions of alkynyl halides 9-11 with norbornadiene
6 and found that whereas the alkynyl chloride 9 and alkynyl
bromide 10 provided the cyclobutene cycloadducts as the
only products in good yields, alkynyl iodide 11 gave not
only the cyclobutene cycloadduct 12c (via an acetylene
π-complex 4, Scheme 1, Type III) but also an addition
product 13c (possibly via a σ-acetylenic metal complex 2,
Scheme 1, Type I).
Transition metal-catalyzed [4 + 2] cycloaddition is an
efficient and important method for the construction of six-
membered rings, especially between electronically similar
dienes and dienophiles, which usually require extreme
Scheme 2. Transition Metal-Catalyzed Cycloaddition
Reactions of Alkynyl Halides
conditions for the thermal cycloaddition to occur.10a
A
number of excellent metal catalysts have been discovered
and transition metal-catalyzed [4 + 2] cycloadditions are
emerging as synthetically useful processes.10-15 However,
to the best of our knowledge, the use of alkynyl halides as
the dienophile in both thermal and transition metal-catalyzed
[4 + 2] cycloadditions is unexplored. In this paper, we report
the first examples of thermal and rhodium-catalyzed in-
tramolecular [4 + 2] cycloadditions of alkynyl halides. To
initiate these studies, diene-tethered alkynyl bromide 14a and
15 were prepared from the corresponding terminal alkynes
using AgNO3 and NBS in acetone,16 and the results of the
thermal Diels-Alder cycloadditions are shown in Table 1.
No reaction was observed when diene-tethered alkynyl
bromide 14a was stirred at 25 °C for 24 h. However, at 50
°C, Diels-Alder started to occur slowly (entries 2-4), and
co-workers found that the cobalt-catalyzed Pauson-Khand
reaction between alkynyl chloride 9 and norbornadiene 6
gave the desired [2 + 2 + 1] cycloadduct 7 in only 45%
yield. The major product obtained was complex 8, which
formed through a homocoupling of the alkynyl chloride 5.8
(10) For reviews on transition metal-catalyzed cycloadditions, see: (a)
Lautens, M.; Klute, W.; Tam, W. Chem. ReV. 1996, 96, 49. (b) Hegedus,
L. S. Coord. Chem. ReV. 1997, 161, 129. (c) Wender, P. A.; Love, J. A. In
AdVances in Cycloaddition; JAI Press: Greenwich, 1999; Vol. 5, pp 1-45.
(11) For Ni-catalyzed [4 + 2] cycloadditions, see: (a) Wender, P. A.;
Ihle, N. C. J. Am. Chem. Soc. 1986, 108, 4678. (b) Wender, P. A.; Jenkins,
T. E. J. Am. Chem. Soc. 1989, 111, 6432. (c) Wender, P. A.; Smith, T. E.
J. Org. Chem. 1995, 60, 2962. (d) Wender, P. A.; Smith, T. E. J. Org.
Chem. 1996, 61, 824. (e) Wender, P. A.; Smith, T. E. Tetrahedron 1998,
54, 1255.
(12) For Rh-catalyzed [4 + 2] cycloadditions, see: (a) Jolly, R. S.;
Luedtke, G.; Sheehan, D.; Livinghouse, T. J. Am. Chem. Soc. 1990, 112,
4965. (b) Wender, P. A.; Jenkins, T. E.; Suzuki, S. J. Am. Chem. Soc. 1995,
117, 1843. (c) O’Mahony, D. J. R.; Belanger, D. B.; Livinghouse, T. Synlett
1998, 443. (d) Gilbertson, S. R.; Hoge, G. S. Tetrahedron Lett. 1998, 39,
2075. (e) Gilbertson, S. R.; Hoge, G. S.; Genov, D. G. J. Org. Chem. 1998,
63, 10077. (f) Murakami, M.; Ubukata, M.; Itami, K.; Ito, Y. Angew. Chem.,
Int. Ed. 1998, 37, 2248. (g) Paik, S.; Son, S. U.; Chung, Y. K. Org. Lett.
1999, 1, 2045. (h) Wang, B.; Cao, P.; Zhang, X. Tetrahedron Lett. 2000,
41, 8041. (i) Heath, H.; Wolfe, B.; Livinghouse, T.; Bae, S. K. Synthesis
2001, 2341. (j) O’Mahony, D. J. R.; Belanger, D. B.; Livinghouse, T. Org.
Biomol. Chem. 2003, 1, 2038. (k) Witulski, B.; Lumtscher, J.; Bergstra¨ber,
U. Synlett 2003, 708. (l) Motoda, D.; Kinoshita, H.; Shinokubo, H.; Oshima,
K. Angew. Chem., Int. Ed. 2004, 43, 1860.
(13) For Co-catalyzed [4 + 2] cycloadditions, see: (a) Hilt, G.; du Mesnil,
F. Tetrahedron Lett. 2000, 41, 6757. (b) Hilt, G.; Korn, T. J. Tetrahedron
Lett. 2001, 42, 2783. (c) Hilt, G.; Smolko, K. I.; Lotsch, B. V. Synlett 2002,
1081. (d) Hilt, G.; Steffen, L. Synthesis 2002, 609. (e) Hilt, G.; Smolko, K.
I. Synthesis 2002, 686. (f) Hilt, G.; Smolko, K. I. Angew. Chem., Int. Ed.
2003, 43, 2795. (g) Hilt, G.; Lu¨ers, S. Synthesis 2003, 1784. (h) Hilt, G.;
Lu¨ers, S.; Harms, K. J. Org. Chem. 2004, 69, 624. (i) Hilt, G.; Lu¨ers, S.;
Smolko, K. I. Org. Lett. 2005, 7, 251.
(14) For Ir-catalyzed [4 + 2] cycloadditions, see: Shibata, T.; Takasaku,
K.; Takesue, Y.; Hirata, N.; Takagi, K. Synlett 2002, 1681.
(15) For Pd-catalyzed [4 + 2] cycloadditions, see: (a) Murakami, M.;
Itami, K.; Ito, Y. J. Am. Chem. Soc. 1997, 119, 7163. (b) Murakami, M.;
Minamida, R.; Itami, K.; Sawamura, M.; Ito, Y. Chem. Commun. 2000,
2293.
(3) For representative examples, see: (a) Jeffery, T. Synthesis 1987, 70.
(b) Bouyssi, D.; Gore, J.; Balme, G. Tetrahedron Lett. 1992, 33, 2811. (c)
Beaudet, I.; Parrain, J.; Quintard, J. Tetrahedron Lett. 1995, 33, 3647. (d)
Tanaka, H.; Yamada, H.; Matsuda, A.; Takahashi, T. Synlett 1997, 381.
(e) Kang, S.; Kim, W.; Jiao, X. Synthesis 1998, 1252. (f) Liu, Y.; Shen, B.;
Kotora, M.; Takahashi, T. Angew. Chem., Int. Ed. 1999, 38, 949. (g)
Yoshida, H.; Shirakawa, E.; Kurahashi, T.; Nakao, Y.; Hiyama, T.
Organometallics 2000, 19, 5671. (h) Timbart, L.; Cintrat, J. Chem. Eur. J.
2002, 8, 1637. (i) Liu, Y.; Zhong, Z.; Nakajima, K.; Takahashi, T. J. Org.
Chem. 2002, 67, 7451.
(4) (a) Alami, M.; Ferri, F. Tetrahedron Lett. 1996, 37, 2763. (b)
Nishihara, Y.; Ikegashira, K.; Hirabayashi, K.; Ando, J.; Mori, A.; Hiyama,
T. J. Org. Chem. 2000, 65, 1780.
(5) (a) Mu¨ller, T.; Hulliger, J.; Seichter, W.; Weber, E.; Weber, T.;
Wu¨bbenhorst, M. Chem. Eur. J. 2000, 6, 54. (b) Zeni, G.; Panatieri, R. B.;
Lissner, E.; Menezes, P. H.; Braga, A. L.; Stefani, H. A. Org. Lett. 2001,
3, 819. (c) Gung, B. W.; Dickson, H. Org. Lett. 2002, 4, 2517. (d) Gung,
B. W.; Kumi, G. J. Org. Chem. 2003, 68, 5956. (e) Kim, S.; Kim, S.; Lee,
T.; Ko, H.; Kim, D. Org. Lett. 2004, 6, 3601. (f) Gung, B. W.; Kumi, G.
J. Org. Chem. 2004, 69, 3488. (g) Jiang, M. X.-W.; Rawat, M.; Wulff, W.
D. J. Am. Chem. Soc. 2004, 126, 5970.
(6) (a) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011. (b)
Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.;
Kurtz, K. C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc. 2003, 125,
2368. (c) Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Org. Lett. 2004, 6,
727. (d) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E.
L. Org. Lett. 2004, 6, 1151. (e) Riddell, N.; Villeneuve, K.; Tam, W. Org.
Lett. 2005, 7, 3681.
(7) Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518.
(8) Balsells, J.; Moyano, A.; Riera, A.; Perica`s, M. Org. Lett. 1999, 1,
1981.
(9) Villeneuve, K.; Riddell, N.; Jordan, R. W.; Tsui, G. C.; Tam, W.
Org. Lett. 2004, 6, 4543.
(16) See Supporting Information for the details of preparation of all of
the diene-tethered alkynyl halides.
5854
Org. Lett., Vol. 7, No. 26, 2005