Communications
[2] The identity of the source of these compounds was revised:
a) J. C. Braekman, D. Daloze, R. Tavares, E. Hadju, R. W. M.
Van Soest, J. Nat. Prod. 2000, 63, 193; b) R. W. M. Van Soest,
J. C. Braekman, D. J. Faulkner, E. Hadju, M. K. Harper, J.
Vacelet, Bull. Inst. R. Sci. Nat. Belg. 1996, 66, 89.
[3] A. V. Rama Rao, M. K. Gurjar, J. Vasudevan, J. Chem. Soc.
Chem. Commun. 1995, 1369.
[4] S. Louwrier, M. Ostendorf, A. Tuynman, H. Hiemstra, Tetrahe-
dron Lett. 1996, 37, 905.
[5] a) B. B. Snider, J. Chen, A. D. Patil, A. J. Freyer, Tetrahedron
Lett. 1996, 37, 6977; b) B. B. Snider, J. Chen, Tetrahedron Lett.
1998, 39, 5697; c) B. B. Snider, M. V. Busuyek, J. Nat. Prod. 1999,
62, 1707.
[6] a) G. P. Black, P. J. Murphy, N. D. A. Walshe, Tetrahedron 1998,
54, 9481; b) G. P. Black, P. J. Murphy, A. Thornhill, N. D. A.
Walshe, C. Zanetti, Tetrahedron 1999, 55, 6547.
[7] a) F. Cohen, L. E. Overman, S. K. L. Sakata, Org. Lett. 1999, 1,
2169; b) F. Cohen, L. E. Overman, J. Am. Chem. Soc. 2001, 123,
10782; c) A. S. Franklin, S. K. Ly, G. H. Mackin, L. E. Overman,
A. J. Shaka, J. Org. Chem. 1999, 64, 1512; d) A. I. McDonald,
L. E. Overman, J. Org. Chem. 1999, 64, 1520; e) F. Cohen, S. K.
Collins, L. E. Overman, Org. Lett. 2003, 5, 4485.
[8] S. G. Duron, D. Y. Gin, Org. Lett. 2001, 3, 1551.
[9] P. A. Evans, T. Manangan, Tetrahedron Lett. 2001, 42, 6637.
[10] M. C. Elliot, M. S. Long, Tetrahedron Lett. 2002, 43, 9191.
[11] a) K. Nagasawa, H. Koshino, T. Nakata, Tetrahedron Lett. 2001,
42, 4155; b) K. Nagasawa, T. Ishiwata, Y. Hashimoto, T. Nakata,
Tetrahedron Lett. 2002, 43, 6383; c) T. Ishiwata, T. Hino, H.
Koshino, Y. Hashimoto, T. Nakata, K. Nagasawa, Org. Lett.
2002, 4, 2921.
[12] A. Goti, M. Cacciarini, F. Cardona, A. Brandi, Tetrahedron Lett.
1999, 40, 2853.
[13] a) K. S. Kim, L. Qian, Tetrahedron Lett. 1993, 34, 7677; b) E. J.
Iwanowicz, M. A. Poss, J. Lin, Synth. Commun. 1993, 23, 1443.
[14] D. S. Dodd, A. P. Kozikowski, Tetrahedron Lett. 1994, 35, 977.
[15] K. B. Sharpless, R. F. Lauer, A. Y. Teranishi, J. Am. Chem. Soc.
1973, 95, 6137.
[16] a) Y. Ito, T. Hirao, T. Saegusa, J. Org. Chem. 1978, 43, 1011; b) J.
Tsuji, I. Minani, I. Shimizu, Tetrahedron Lett. 1983, 24, 5 635 ; c) I.
Minani, K. Takahashi, I. Shimizu, T. Kimura, J. Tsuji, Tetrahe-
dron 1986, 42, 2971; d) J. Tsuji, K. Takahashi, I. Minani, I.
Shimizu, Tetrahedron Lett. 1984, 25, 4783.
[17] a) G. A. Kraus, M. J. Taschner, J. Org. Chem. 1980, 45, 1175;
b) G. A. Kraus, B. Roth, J. Org. Chem. 1980, 45, 4825; c) B. O.
Lindgren, T. Nilsson, Acta Chem. Scand. 1973, 27, 888.
[18] N. Hashimoto, T. Aoyama, T. Shioiri, Chem. Pharm. Bull. 1981,
29, 1475.
[19] K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, J. Am. Chem. Soc.
2000, 122, 7596.
[20] We currently believe the mechanism of this reaction to involve
iminium formation by oxidation of the guanidine nitrogen atom
at the ring junction, followed by isomerization to form the a,b-
unsaturated aldehyde.
[21] Spectral data for synthetic 1: [a]2D5 = +4.29 (c = 0.25, MeOH)
(lit:[1a] [a]2D5 = +8.9 (c = 2.3, MeOH)); IR (neat): n˜ = 2925, 2854,
1732, 1697, 1683, 1648, 1637, 1558, 1347, 1092 cmÀ1 1H NMR
;
(500 MHz, CD3OD): d = 4.39 (t, J = 6.1 Hz, 1H), 4.21 (t, J =
6.4 Hz, 2H), 4.13 (t, J = 6.7 Hz, 2H), 3.93 (m, 1H), 3.83 (m,
2H), 3.66 (m, 1H), 3.52 (m, 1H), 3.32 (m, 1H), 3.22 (t, J =
7.3 Hz, 2H), 3.12 (dd, J = 4.6, 3.5Hz, 1H), 2.98 (m, 1H), 2.35(m,
1H), 2.28–2.17 (m, 3H), 2.10 (m, 1H), 1.76 (m, 2H), 1.72–1.52
(m, 9H), 1.48–1.23 (m, 29H), 1.27 (t, J = 6.7 Hz, 3H), 0.89 ppm
(t, J = 6.7 Hz, 3H); 13C NMR (125MHz, CD 3OD): d = 170.7,
166.2, 158.7, 153.1, 152.7, 151.5, 103.3, 66.0, 65.1, 57.7, 57.3, 53.2,
51.2, 49.9, 48.8, 45.6, 42.0, 37.5, 36.9, 34.2, 33.0, 31.9, 31.4, 29.7,
29.3, 27.0, 26.6, 26.2, 25.2, 23.7, 22.9, 18.4, 14.4 ppm; HRMS
(FAB, MH+): calcd for C42H74N9O4: 768.5864, found: 768.5866.
1562
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 1559 –1562