10.1002/ejoc.202000299
European Journal of Organic Chemistry
COMMUNICATION
the mixture. The resulting solution was stirred for 1.5 hours at -20 °C and
then quenched with saturated NaHCO3 (5 mL). The mixture was extracted
with DCM (3 × 10 mL). The combined organic layers were washed with
brine (5 mL) and dried over Na2SO4. The solution was concentrated by
rotary evaporator under reduced pressure gave a residue, which was
purified by using flash column chromatography with petroleum ether/ethyl
acetate as eluent to afford the product 4.
B. P. Bandgar, P. E. More, V. T. Kamble, S. S. Sawant, Aust. J. Chem.
2008, 61, 1006; f) B. Basu, S. Paul, A. K. Nanda, Green Chem. 2010, 12,
767; g) R. Qiu, G. Zhang, X. Ren, X. Xu, R. Yang, S. Luo, S. Yin, J.
Organomet. Chem. 2010, 695, 1182. h) M. Xuan, C. Lu, M. Liu, B. L. Lin, J.
Org. Chem. 2019, 84, 7694; i) K. Kuciꢂski, G. Hreczycho, Org. Process Res.
Dev. 2018, 22, 489.
[12] a) G. Petrillo, M. Novi, G. Garbarin, M. Filliberti, Tetrahedron Lett. 1988, 29,
4185; b) G. Petrillo, M. Novi, G. Garbarin, M. Filliberti, Tetrahedron. 1988,
45, 7411; c) A. Osuka, N. Ohmasa, Y. Uno, H. Suzuki, Synthesis. 1983, 68;
d) N. Sawada, T. Itoha, N. Yasuda, Tetrahedron Lett. 2006, 47, 6595; e) C.
Lai, B. J. Backes, Tetrahedron Lett. 2007, 48, 3033; f) H. J. Gais, T.
Jagusch, N. Spalthoff, F. Gerhards, M. Frank, G. Raabe, Chem. Eur. J.
2003, 9, 4202; g) B. J. Lussem, H. J. Gais, J. Org. Chem. 2004, 69, 4041;
h) L. C. Schmidt, V. Rey, A. B. Peñéñory, Eur. J. Org. Chem. 2006, 2210;
i) B. M. Trost, T. Zhang, J. D. Sieber, Chem. Sci. 2010, 1, 427; j) S. M.
Soria-Castro, D. M. Andrada, D. A. Caminos, J. E. Argüello, M. Robert, A.
B. Peñéñory, J. Org. Chem. 2017, 82, 11464; k) S. M. Soria-Castro, A. B.
Peꢃꢀꢃory, Beilstein. J. Org. Chem. 2013, 9, 467; l) S. M. Soria-Castro, F.
Bisogno, A. B. Peꢃꢀꢃory, Org. Chem. Front. 2017, 4, 1533.
Acknowledgements
This research was financially supported by National Natural
Science Foundation of China (21772117), Natural Science Basic
Research Plan in Shaanxi Province of China (2018JM2050), and
Jiangsu Key Laboratory of Advanced Catalytic Materials and
Technology. We are also grateful to Ms. Xin-Ai Guo and Mr. Min-
Zhen Wang for NMR analysis, Dr. Hua-Min Sun for X-ray
crystallographic analysis of compound 4y and 7c, and Ms. Juan
Fan for mass spectrometric analysis (Shaanxi Normal University).
[13] For selected examples on thioesterification of aldehydes: a) Y. T. Huang,
S. Y. Lu, C. L. Yi, C. F. Lee, J. Org. Chem. 2014, 79, 4561; b) H. Nambu,
K. Hata, M. Matsugi, Y. Kita, Chem. Eur. J. 2005, 11, 719; c) M. Takagi, S.
Goto, T. Matsuda, J. Chem. Soc. Chem. Commun. 1976, 92; d) T. Uno, T.
Inokuma, Y. Takemoto, Chem. Commun. 2012, 48, 1901; e) C. L. Yi, Y. T.
Huang, C. F. Lee, Green Chem. 2013, 15, 2476; f) J. W. Zeng, Y. C. Liu, P.
A. Hsieh, Y. T. Huang, C. L. Yi, S. S. Badsara, C. F. Lee, Green Chem.
2014, 16, 2644; g) X. Zhu, Y. Shi, H. Mao, Y. Cheng, C. Zhu, Adv. Synth.
Catal. 2013, 355, 3558; h) M. Tingoli, A. Temperini, L. Testaferri, M. Tiecco,
Synlett. 1995, 1129; i) J. Chen, P. Yuan, L. Wang, Y. Huang, J. Am. Chem.
Soc. 2017, 139, 7045; j) Y. Zhang, P. Ji, W. Hu, Y. Wei, H. Huang, W. Wang,
Chem. -Eur. J. 2019, 25, 8225; k) S. Mukherjee, T. Patra, F. Glorius, ACS
Catal. 2018, 8, 5842; l) K. A. Ogawa, A. J. Boydston, Org. Lett. 2014, 16,
1928; m) J. Chung, U. R. Seo, S. Chun, Y. K. Chung, ChemCatChem 2016,
8, 318; n) S. B. Bandgar, B. P. Bandgar, B. L. Korbad, S. S. Sawant,
Tetrahedron Lett. 2007, 48, 1287.
Keywords: thioester • furan • dearomatization • triazole • multi-
component reactions
[1]
a) M. Kazemi, L. Shiri, J. Sulfur Chem. 2015, 36, 613; b) V. Hirschbeck,
P. H. Gehrtz, I. Fleischer, Chem. -Eur. J. 2018, 24, 7092; c) S. Fujiwara,
N. Kambe, Top. Curr. Chem. 2005, 251, 87; d) M. Wang, X. Jiang, Top.
Curr. Chem. 2018, 376, 14; e) N. Wang, P. Saidhareddya, X. Jiang, Nat.
Prod. Rep. 2020, 37, 246.
[2] a) T. Wieland, E. Bokelmann, L. Bauer, H. U. Lang, H. Lau, Justus Liebigs.
Ann. Chem. 1953, 583, 129; b) P. Dawson, T. Muir, I. Clark-Lewis, S. Kent,
Science. 1994, 266, 776; c) S. B. H. Kent, Chem. Soc. Rev. 2009, 38, 338.
[3] I. A. Os’kina, V. M. Vlasov, Russ. J. Org. Chem. 2009, 45, 523.
[4] M. N. Burhardt, R. H. Taaning, T. Skrydstrup, Org. Lett. 2013, 15, 948.
[5] a) T. Miyazaki, Y. Y. Han, H. Tokuyama, T. Fukuyama, Synlett. 2004, 3,
477; b) H. Tokuyama, S. Yokoshima, T. Yamashita, S. C. Lin, L. Li, T.
Fukuyama, J. Braz. Chem. Soc. 1998, 9, 381.
[14] For selected examples on thiocarbonylation of alkenes: a) M. N. Burhardt,
A. Ahlburg, T. Skrydstrup, J. Org. Chem. 2014, 79, 11830; b) J. J. Jackson,
H. Kobayashi, S. D. Steffens, A. Zakarian, Angew. Chem., Int. Ed. 2015,
54, 9971; Angew. Chem. 2015, 127, 10109; c) Y. Gui, L. Q. Qiu, Y. H. Li,
H. X. Li, S. W. Dong, J. Am. Chem. Soc. 2016, 138, 4890; d) N. Ollivier, P.
Toupy, R. C. Hartkoorn, R. Desmet, J. C. M. Monbaliu, O. Melnyk, Nat.
Commun. 2018, 9, 1; e) V. Hirschbeck, P. H. Gehrtz, I. Fleischer, Chem. -
Eur. J. 2018, 24, 7092; f) R. Castarlenas, A. D. Giuseppe, J. J. P. Torrente,
L. A. Oro, Angew. Chem., Int. Ed. 2013, 52, 211; Angew. Chem. 2013, 125,
223; g) W. J. Xiao, G. Vasapollo, H. Alper, J. Org. Chem. 1998, 63, 2609;
h) C. Li, W. J. Xiao, H. Alper, J. Org. Chem. 2009, 74, 888; i) W. J. Xiao, H.
Alper, J. Org. Chem. 1998, 63, 7939; j) W. J. Xiao, G. Vasapollo, H. Alper,
J. Org. Chem. 1999, 64, 2080; k) W. J. Xiao, G. Vasapollo, H. Alper, J. Org.
Chem. 2000, 65, 4138; l) V. Hirschbeck, P. H. Gehrtz, I. Fleischer, J. Am.
Chem. Soc. 2016, 138, 16794; m) X. Wang, B. Wang, X. Yin, W. Yu, Y.
Liao, J. Ye, M. Wang, L. Hu, J. Liao, Angew. Chem., Int. Ed. 2019, 58,
12264; Angew. Chem. 2019, 131, 12392.
[6] a) H. Tokuyama, S. Yokoshima, T. Yamashita, T. Fukuyama, Tetrahedron
Lett. 1998, 39, 3189; b) L. S. Liebeskind, J. Srogl, J. Am. Chem. Soc. 2000,
122, 11260; c) B. W. Fausett, L. S. Liebeskind, J. Org. Chem. 2005, 70,
4851; d) H. Prokopcovꢁ, C. O. Kappe, Angew. Chem., Int. Ed. 2009, 48,
2276; Angew. Chem. 2009, 121, 2312; e) H. Kobayashi, J. A. Eickhoff, A.
Zakarian, J. Org. Chem. 2015, 80, 9989; f) R. Wittenberg, J. Srogl, M. Egi,
L. S. Liebeskind, Org. Lett. 2003, 5, 3033; g) J. M. Villalobos, J. Srogl, L. S.
Liebeskind, J. Am. Chem. Soc. 2007, 129, 15734; h) F. Sun, M. Li, C. He,
B. Wang, B. Li, X. Sui, Z. Gu, J. Am. Chem. Soc. 2016, 138, 7456.
[7] For selected examples on asymmetric aldol reaction of thioesters: a) S.
Kobayshi, H. Uchiro, Y. Fujishita, I. Shiina, T. Mukaiyama, J. Am. Chem.
Soc. 1991, 113, 4247; b) S. Kobayashi, M. Horibe, J. Am. Chem. Soc. 1994,
116, 9805; c) D. A. Evans, J. A. Murry, M. C. Kozlowski, J. Am. Chem. Soc.
1996, 118, 5814.
[15] For selected examples on thiocarbonylation of alkynes: a) A. Ogawa, J.
Kawakami, M. Mihara, T. Ikeda, N. Sonoda, T. Hirao, J. Am. Chem. Soc.
1997, 119, 12380; b) J. Kawakami, M. Mihara, I. Kamiya, M. Takeba, A.
Ogawa, N. Sonoda, Tetrahedron. 2003, 59, 3521; c) B. El-Ali, J. Tijani, A.
El-Ghanam, M. Fettouhi, Tetrahedron Lett. 2001, 42, 1567.
[8] For selected examples on asymmetric Mannich reaction of thioesters: a) H.
Ishitani, M. Ueno, S. Kobayashi, J. Am. Chem. Soc. 1997, 119, 7153; b) H.
Ishitani, M. Ueno, S. Kobayashi, J. Am. Chem. Soc. 2000, 122, 8180.
[9] For selected examples on asymmetric Michael reaction of thioesters: a) D.
A. Evans, T. Rovis, M. C. Kozlowski, J. S. Tedrow, J. Am. Chem. Soc. 1999,
121, 1994; b) D. A. Evans, T. Rovis, M. C. Kozlowski, C. W. Downey, J. S.
Tedrow, J. Am. Chem. Soc. 2000, 122, 9134; c) D. A. Evans, K. A. Scheidt,
J. N. Johnston, M. C. Willis, J. Am. Chem. Soc. 2001, 123, 4480.
[16] For selected examples on thiocarbonylation of organic halides: a) H. Cao,
L. McNamee, H. Alper, J. Org. Chem. 2008, 73, 3530; b) Y. Hu, J. Liu, Z.
Lu, X. Luo, H. Zhang, Y. Lan, A. Lei, J. Am. Chem. Soc. 2010, 132, 3153;
c) M. N. Burhardt, A. Ahlburg, T. Skrydstrup, J. Org. Chem. 2014, 79, 11830;
d) S. M. Islam, R. A. Molla, A. S. Roy, K. Ghosh, RSC Adv. 2014, 4, 26181.
[17] a) Z. Qiao, X. Jiang, Org. Lett. 2016, 18, 1550; b) M. Wang, Z. Dai, X. Jiang,
Nat. Commun. 2019‚ 10‚ 2661.
[10] a) F. Pietrocola, L. Galluzzi, J. M. Bravo-San Pedro, F. Madeo, G. Kroemer,
Cell Metab. 2015, 21, 805; b) P. J. Bracher, P. W. Snyder, B. R. Bohall, G.
M. Whitesides, Origins Life Evol. Biospheres. 2011, 41, 399; c) J. Staunton,
K. J. Weissman, Nat. Prod. Rep. 2001, 18, 380.
[18] a) M. R. DuBois, Chem. Rev. 1989, 89, 1; b) F. Dénès, M. Pichowicz, G.
Povie, P. Renaud, Chem. Rev. 2014, 114, 2587; c) R. Castarlenas, A. Di-
Giuseppe, J. J. Perez-Torrente, L. A. Oro, Angew. Chem., Int. Ed. 2013, 52,
211; Angew. Chem. 2013, 125, 223.
[11] a) K. Ishihara, S. Ohara, H. Yamamoto, Science. 2000, 290, 1140; b) J.
Otera, Angew. Chem., Int. Ed. 2001, 40, 2044; Angew. Chem. 2001, 113,
2099; c) K. Manabe, X. M. Sun, S. Kobayashi, J. Am. Chem. Soc. 2001,
123, 10101; d) M. Sprecher, E. Nov, Synth. Commun. 1992, 22, 2949; (e)
5
This article is protected by copyright. All rights reserved.