Please do not adjust margins
Chemical Science
Page 6 of 8
EDGE ARTICLE
Chemical Science
DOI: 10.1039/C9SC05444H
6.
7.
2006, 128, 15964-15965.
We are currently pursuing further work within our laboratories
to understand the effects of a wider range of functional groups
on nickel-catalysed reactions and their fundamental steps using
kinetic and mechanistic studies.
M. Tobisu, T. Xu, T. Shimasaki and N. Chatani, J. Am. Chem.
Soc., 2011, 133, 19505-19511.
J. E. Dander and N. K. Garg, ACS Catal, 2017, 7, 1413-1423.
C. Y. Lin and P. P. Power, Chem Soc Rev, 2017, 46, 5347-
5399.
8.
9.
Conflicts of interest
There are no conflicts to declare.
10.
11.
J.
Jover,
Catal.
Sci.
Technol.,
2019,
DOI:
10.1039/C9CY01365B.
T. Inatomi, Y. Fukahori, Y. Yamada, R. Ishikawa, S.
Kanegawa, Y. Koga and K. Matsubara, Catal. Sci. Technol.,
2019, 9, 1784-1793.
G. D. Jones, J. L. Martin, C. McFarland, O. R. Allen, R. E. Hall,
A. D. Haley, R. J. Brandon, T. Konovalova, P. J. Desrochers,
P. Pulay and D. A. Vicic, J. Am. Chem. Soc., 2006, 128,
13175-13183.
I. Funes-Ardoiz, D. J. Nelson and F. Maseras, Chem. Eur. J.,
2017, 23, 16728-16733.
D. J. Nelson and F. Maseras, Chem. Commun., 2018, 54,
10646-10649.
Acknowledgements
We are grateful for funding from: a Syngenta/Engineering and
Physical Sciences Research Council (EPSRC) Industrial CASE
Studentship for AKC (EP/P51066X/1); the EPSRC
12.
(EP/M027678/1); the University of Strathclyde for
a
13.
14.
15.
16.
17.
18.
19.
20.
21.
Chancellor’s Fellowship for DJN (2014-2018); and the Carnegie
Trust for the Universities of Scotland for a Research Incentive
Grant (RIG008165). We thank the Department of Pure and
Applied Chemistry at the University of Strathclyde for
consumables and facilities funding for DKL. We thank Mr G.
Bain, Mr C. Irving, Ms P. Keating, and Dr J. Parkinson for
assistance with technical and analytical facilities. We thank Dr J.
Sanderson (University of Newcastle) for assistance with initial
factorial experimental design studies. Some of the results
reported here were obtained using the EPSRC-funded ARCHIE-
WeSt high-performance computer (archie-west.ac.uk)
(EP/K000586/1); we are grateful to Mr J. Buzzard, Dr K. Kubiak-
Ossowska, and Dr R. Martin for their assistance with this facility.
We thank Dr S. Sproules for EPR analyses and Dr A. Watson
(University of St Andrews) for helpful discussions.
K. Zhang, M. Conda-Sheridan, S. R. Cooke and J. Louie,
Organometallics, 2011, 30, 2546-2552.
D. S. McGuinness, K. J. Cavell, B. W. Skelton and A. H.
White, Organometallics, 1999, 18, 1596-1605.
A. Manzoor, P. Wienefeld, M. C. Baird and P. H. M.
Budzelaar, Organometallics, 2017, 36, 3508-3519.
G. Yin, I. Kalvet, U. Englert and F. Schoenebeck, J. Am.
Chem. Soc., 2015, 137, 4164-4172.
S. Bajo, G. Laidlaw, A. R. Kennedy, S. Sproules and D. J.
Nelson, Organometallics, 2017, 36, 1662-1672.
A. K. Cooper, P. M. Burton and D. J. Nelson, Synthesis, 2020,
DOI: 10.1055/s-0039-1690045.
We have established the mechanism of this reaction, and
showed that this proceeds via oxidative addition to form
Ni(II) intermediates - which are only observable when the
aryl halide has ortho-substituents - which then undergo
comproportionation to Ni(0). Please see reference 15 for
details.
Notes and references
‡ See the supporting information for further details.
§ Reaction outcomes were analysed using calibrated GC-FID
analyses. In some competition experiments, total yield
sometimes slightly exceeded 100% which is likely to be due to
errors in weighing out exactly one equivalent of boronic acid.
§§ Calculations were carried out using Gaussian09 Rev. D01.54
Geometry optimisations were carried out without symmetry
constraints using the B3LYP functional with Grimme’s D3
dispersion corrections, the LANL2DZ(dp) basis set on Br and I, the
LANL2TZ(f) basis set on Ni and Fe, and the 6-31G(d) basis set on
all other atoms. The nature of stationary points was confirmed
using frequency calculations. Energies were refined using single
point calculations in which the 6-31G(d) basis set was exchanged
for 6-311+G(d,p). All calculations were carried out in toluene
solvent using the SMD solvent model.
22.
C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165-
195.
23.
24.
25.
D. Walther, Z. Anorg. Allg. Chem., 1977, 431, 17-30.
D. Walther, J. Organomet. Chem., 1980, 190, 393-401.
J. Kaiser, J. Sieler, D. Walther, E. Dinjus and L. Golic, Acta
Crystallographica Section B, 1982, 38, 1584-1586.
R. Countryman and B. R. Penfold, Journal of Crystal and
Molecular Structure, 1972, 2, 281-290.
T. T. Tsou, J. C. Huffman and J. K. Kochi, Inorg. Chem., 1979,
18, 2311-2317.
A. Flores-Gaspar, P. Pinedo-González, M. G. Crestani, M.
Muñoz-Hernández, D. Morales-Morales, B. A. Warsop, W.
D. Jones and J. J. García, J. Mol. Cat. A., Chem., 2009, 309,
1-11.
R. Doi, K. Kikushima, M. Ohashi and S. Ogoshi, J. Am. Chem.
Soc., 2015, 137, 3276-3282.
C. Lei, Y. J. Yip and J. S. Zhou, J Am Chem Soc, 2017, 139,
6086-6089.
Y. Hoshimoto, M. Ohashi and S. Ogoshi, Acc. Chem. Res.,
2015, 48, 1746-1755.
A. N. Desnoyer, W. He, S. Behyan, W. Chiu, J. A. Love and
P. Kennepohl, Chemistry, 2019, 25, 5259-5268.
26.
27.
28.
1.
2.
3.
S. Z. Tasker, E. A. Standley and T. F. Jamison, Nature, 2014,
509, 299-309.
29.
30.
31.
32.
J. Twilton, P. Zhang, M. H. Shaw, R. W. Evans and D. W.
MacMillan, Nature Reviews Chemistry, 2017, 1, 0052.
J. C. Tellis, C. B. Kelly, D. N. Primer, M. Jouffroy, N. R. Patel
and G. A. Molander, Acc. Chem. Res., 2016, 49, 1429-1439.
D. J. Weix, Acc. Chem. Res., 2015, 48, 1767-1775.
T. Mesganaw and N. K. Garg, Org. Proc. Res. Dev., 2012, 17,
29-39.
4.
5.
6 | Chem. Sci., 2020, 00, 1-3
This journal is © The Royal Society of Chemistry 2020
Please do not adjust margins