C O M M U N I C A T I O N S
Scheme 2 a
a Reagents and conditions: (1) ethynyl(diisopropyl)bromosilane, Et3N, DMAP, CH2Cl2, 78%; (2) PdCl2(PPh3)2, CuI, Et3N, 87%; (3) ClTi(OPri)3, i-PrMgCl,
52%; (4) HF‚pyr, 84%; (5) MeO2CCl, pyr, CH2Cl2, 97%; (6) 8, Pd2(dba)3, LiCl, DMF, 55%; (7) TBAF, DMF, 75 °C, 70%.
(5) Kimura, K.; Takahashi, H.; Miyata, N.; Yoshihama, M.; Uramoto, M. J.
and highlights the utility of the titanium(II)-mediated cyclization
of (silyloxy)enynes in the context of complex natural products
Antibiot. 1996, 49, 697.
(6) O’Neil, G. W.; Phillips, A. J. Tetrahedron Lett. 2004, 45, 4253.
synthesis.
Acknowledgment. We thank Professor Tarek Sammakia for
helpful discussions with regard to halogen dance chemistry. This
research was supported by the National Cancer Institute (NCI
5R01CA110246). This work was facilitated by NMR facilities
purchased partly with funds from an NSF Shared Instrumentation
Grant (CHE-0131003).
(7) For other recent applications of group IV metal chemistry to polyketides,
see: (a) Bahadoor, A. B.; Flyer, A.; Micalizio, G. C. J. Am. Chem. Soc.
2005, 127, 3694. (b) Shimp, H. L.; Micalizio, G. C. Org. Lett. 2005, 7,
5111.
(8) Tre´court, F.; Mallet, M.; Mongin, O.; Que´guiner, G. J. Org. Chem. 1994,
59, 6173.
(9) For reviews of the halogen dance reaction, see: (a) Bunnett, J. F. Acc.
Chem. Res. 1972, 5, 139. (b) Froehlich, J. In Progress in Heterocyclic
Chemistry; Suschitzky, H., Scriven, E. F. V., Eds.; Oxford: New York,
1994; Vol. 6, pp 1-35.
(10) For recent applications, see: (a) Sammakia, T.; Stangeland, E. L.;
Whitcomb, M. C. Org. Lett. 2002, 4, 2385. (b) Comins, D. L.; Saha, J.
Tetrahedron Lett. 1995, 36, 7995. (c) Guillier, F.; Nivoliers, F.; Godard,
A.; Marsais, F.; Que´guiner, G. Tetrahedron Lett. 1994, 35, 6489. (d)
Marsais, F.; Pineau, P.; Nivolliers, F.; Mallet, M.; Turck, A.; Godard, A.;
Que´guiner, G. J. Org. Chem. 1992, 57, 565.
Supporting Information Available: Characterization data and
spectra for new compounds (6-8, 10-16). This material is available
(11) Alcohol 9 was synthesized by addition of vinylmagnesium bromide to
tiglic aldehyde and then kinetic resolution employing Sharpless asymmetric
epoxidation. See: Honda, T.; Mizutani, H.; Kanai, K. J. Chem. Soc., Perkin
Trans. 1 1996, 1729.
(12) Synthesized from 4-iodo-3-methyl-3-buten-1-ol (Marshall, J. A.; Eidam,
P. Org. Lett. 2004, 6, 445) by a sequence consisting of (a) silylation
(TBSCl, imidazole, 86%); (b) conversion to the allylic alcohol (t-BuLi,
paraformaldehyde, 82%), (c) protection of the allylic alcohol and removal
of the TBS ether (TBDPSCl, imidazole then AcOH, 79%), (d) oxidation-
olefination (Dess-Martin periodinane, CH2Cl2, then CHI3, CrCl2, THF-
dioxane, 75% over two steps).
References
(1) (a) Piericidin A: Tamura, S.; Takahashi, N.; Miyamoto, S.; Mori, R.;
Suzuki, S.; Nagatsu, J. Agric. Biol. Chem. 1963, 27, 576. (b) Structure
revision: Yoshida, S.; Shiraishi, S.; Fujita, K.; Takahashi, N. Tetrahedron
Lett. 1975, 16, 1863. (c) Piericidin B and piericidin stereochemistry
determination: Takahashi, N.; Suzuki, A.; Kimura, Y.; Miyamoto, S.;
Tamura, S. Tetrahedron Lett. 1967, 8, 1961. (d) Stereochemical revision:
Jansen, R.; Ho¨fle, G. Tetrahedron Lett. 1983, 24, 5485.
(2) For reviews, see: (a) Yoshida, S.; Takahasi, N. Heterocycles 1978, 10,
425. (b) Esposti, M. D.; Ghelli, A. Biochem. Soc. Trans. 1999, 27, 606.
(3) Schnermann, M. J.; Boger, D. L. J. Am. Chem. Soc. 2005, 127, 15704.
(4) Previous synthetic studies and analogue synthesis: (a) Ono, M.; Yoshida,
N.; Akita, H. Chem. Pharm. Bull. 1997, 45, 1745. (b) Ono, M.; Yoshida,
N.; Kokubu, Y.; Sato, E.; Akita, H. Chem. Pharm. Bull. 1997, 14288. (c)
Cox, C. M.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 1991, 1901.
(d) Cox, C. M.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 1991,
660. (e) Schmidtchen, F. P.; Rapoport, H. J. Am. Chem. Soc. 1977, 99,
7014. (f) Yoshida, S.; Nagao, Y.; Takahashi, N. Agric. Biol. Chem. 1980,
44, 2913.
(13) To the limits of detection by 1H NMR analysis of the crude reaction
mixture, this reaction produces a single diastereoisomer (dr >95:5). In
this instance, the major side reaction is simple reduction of the enyne.
(14) Under the conditions employed, this coupling provided a ∼2.5:1 ratio of
E:Z diastereoisomers at the ∆2,3 olefin, from which the desired compound
could be isolated by chromatography on AgNO3-impregnated silica.
(15) See the Supporting Information for details.
JA057434K
9
J. AM. CHEM. SOC. VOL. 128, NO. 2, 2006 409