Angewandte
Chemie
[5] a) P. L. Holland, T. R. Cundari, L. L. Perez, N. A. Eckert, R. J.
Lachicotte, J. Am. Chem. Soc. 2002, 124, 14416; b) S. Puiu, T. H.
Warren, Organometallics 2003, 22, 3974; c) D. Zhang, G.-X. Jin,
L.-H. Weng, F. Wang, Organometallics 2004, 23, 3270.
[6] a) K. D. Kitiachvili, D. J. Mindiola, G. L. Hillhouse, J. Am.
Chem. Soc. 2004, 126, 10554; b) D. J. Mindiola, G. L. Hillhouse,
J. Am. Chem. Soc. 2001, 123, 4623.
[7] R. C. J. Atkinson, V. C. Gibson, N. J. Long, Chem. Soc. Rev.
2004, 33, 313.
[8] K.-S. Gan, T. S. A. Hor in Ferrocenes (Eds.: A. Togni, T.
Hayashi), VCH, Weinheim, 1995, chap. 1.
[9] Z. Weng, S. Teo, L. L. Koh, T. S. A. Hor, Organometallics 2004,
23, 4342.
[10] a) C. M. Killian, J. P. McDevitt, P. B. Mackenzie, L. S. Moody,
J. A. Ponasik, Jr., WO 9840420, 1998; b) Z. Guan, WO 0059956,
2000; c) Z. Guan, W. J. Marshall, Organometallics 2002, 21, 3580;
d) O. Daugulis, M. Brookhart, Organometallics 2002, 21, 5926.
[11] a) W. Steffen, T. Blömker, N. Kleigrewe, G. Kehr, R. Fröhlich, G.
Erker, Chem. Commun. 2004, 1188; b) T. M. Kooistra, Q.
Knijnenburg, J. M. M. Smits, A. D. Horton, P. H. M. Budzelaar,
A. W. Gal, Angew. Chem. 2001, 113, 4855; Angew. Chem. Int. Ed.
2001, 40, 4719; c) V. C. Gibson, M. J. Humphries, K. P. Tellmann,
D. F. Wass, A. J. P. White, D. J. Williams, Chem. Commun. 2001,
2252.
Figure 3. ORTEP representation of the X-ray structure of 4. Hydrogen
atoms have been omitted for clarity. Thermal ellipsoids are drawn at
ꢀ
40% probability. Selected bond lengths [] and angles [8]: Ni(1) C(1)
ꢀ
ꢀ
ꢀ
1.887(8), Ni(1) N(1) 1.963(6), Ni(1) P(1) 2.169(2), Ni(1) Cl(1)
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
2.231(2), C(1) N(1) 1.435(9); C(1) Ni(1) N(1) 43.7(3), C(1) Ni(1)
ꢀ
ꢀ
ꢀ
ꢀ
P(1) 103.9(2), N(1) Ni(1) P(1) 145.91(18), N(1) Ni(1) Cl(1)
¯
[12] Crystal data for 2·1/2C7H8: Mr = 550.28, triclinic, space group P1,
ꢀ
ꢀ
107.77(7), Cl(1) Ni(1) P(1) 106.12(8).
a = 12.1887(15), b = 14.1652(17), c = 16.2034(19) , a =
89.038(2)8, b = 80.354(2)8, g = 69.237(2)8, V= 2576.2(5) 3, Z =
4, 1 = 1.419 Mgmꢀ3, F(000) = 1149, l(MoKa) = 0.71073 , m =
lytically active species is widely believed to be a cationic
alkyl–metal complexL nMR+.[19] Olefin oligomerization by
NiII is also widely acknowledged to proceed via LnNiR+,
which readily gives LnNiII(H)(alkene)+ as a key intermedi-
ate.[20] Use of NiI complexes, such as 2 and 4, or Ni0 complexes,
such as 3a and 3b, suggests that we can enter the catalytic
cycle with non-alkyls and electronically neutral species. The
key here is the use of a coordinatively exposed metal in a low
oxidation state and a hemilabile ligand. These are features
that are usually advantageous to catalytic pathways, such as
Suzuki coupling, that hinge on the complementary oxidative
addition and reductive elimination, but not olefin oligomeri-
zation. They offer new opportunities in catalyst design for
polymerization, but they also pose some pertinent questions.
For example, does this necessarily require a different
mechanistic pathway? Do NiI and Ni0 offer a better prospect
in olefin oligomerization? Does the use of mononuclear
paramagnetic NiI necessarily demand a free radical pathway,
such as the one shown in other four-coordinate NiI com-
plexes?[21] Our ongoing experiments are driven by these
curiosities.
1.474 mmꢀ1
, T= 233(2) K, crystal dimensions: 0.60 0.24
0.20 mm3. Siemens SMART diffractometer, equipped with a
CCD detector. Of 33678 reflections measured, 11817 unique
reflections were used in refinement. Final R = 0.0466, (Rw =
0.1033). Crystal data for 3b: Mr = 871.38, monoclinic, space
group P21/c, a = 12.6330(8), b = 26.9142(17), c = 12.5259(7) ,
a = 908, b = 91.409(2)8, g = 908, V= 4257.6(4) 3, Z = 4, 1 =
1.359 Mgmꢀ3
0.878 mmꢀ1
,
F(000) = 1808,
T= 223(2) K, crystal dimensions: 0.20 0.10
l(MoKa) = 0.71073 ,
m =
,
0.06 mm3. Siemens SMART diffractometer, equipped with a
CCD detector. Of 30212 reflections measured, 9776 unique
reflections were used in refinement. Final R = 0.0656, (Rw =
0.1373). Crystal data for 4: Mr = 527.50, monoclinic, space
group C2/c, a = 15.8825(8), b = 12.4015(7), c = 24.0762(13) ,
a = 908, b = 90.031(2)8, g = 908, V= 4742.2(4) 3, Z = 8, 1 =
1.478 Mgmꢀ3
1.598 mmꢀ1
,
F(000) = 2200,
T= 223(2) K, crystal dimensions: 0.12 0.08
l(MoKa) = 0.71073 ,
m =
,
0.06 mm3. Siemens SMART diffractometer, equipped with a
CCD detector. Of 13522 reflections measured, 4157 unique
reflections were used in refinement. Final R = 0.0764, (Rw =
0.1569). CCDC-266586 (2), -266587 (3b), and -278325 (4)
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge
request/cif.
Received: July 20, 2005
Published online: October 27, 2005
[13] C. Müller, R. J. Lachicotte, W. D. Jones, Organometallics 2002,
21, 1975.
[14] a) F. Speiser, P. Braunstein, L. Saussine, R. Welter, Organo-
metallics 2004, 23, 2613; b) F. Speiser, P. Braunstein, L. Saussine,
Organometallics 2004, 23, 2625.
[15] M. Tanabiki, K. Tsuchiya, Y. Kumanomido, K. Matsubara, Y.
Motoyama, H. Nagashima, Organometallics 2004, 23, 3976.
[16] R. S. Dickson, J. A. Ibers, J. Am. Chem. Soc. 1972, 94, 2988.
[17] M. S. W. Chan, L. Q. Deng, T. Ziegler, Organometallics 2000, 19,
2741.
[18] a) M. D. Leatherman, S. A. Svejda, L. K. Johnson, M. Broo-
khart, J. Am. Chem. Soc. 2003, 125, 3068; b) E. Kogut, A. Zeller,
T. H. Warren, T. Strassner, J. Am. Chem. Soc. 2004, 126, 11984;
c) E. V. Salo, Z. B. Guan, Organometallics 2003, 22, 5033;
Keywords: coordination modes · homogeneous catalysis ·
N,P ligands · nickel · oligomerization
.
[1] See, for example: a) L. K. Johnson, C. M. Killian, M. Brookhart,
J. Am. Chem. Soc. 1995, 117, 6414; b) S. Mecking, Angew. Chem.
2001, 113, 550; Angew. Chem. Int. Ed. 2001, 40, 534.
[2] V. C. Gibson, S. K. Spitzmesser, Chem. Rev. 2003, 103, 283.
[3] J. M. Malinoski, M. Brookhart, Organometallics 2003, 22, 5324.
[4] J. C. Jenkins, M. Brookhart, J. Am. Chem. Soc. 2004, 126, 5827.
Angew. Chem. Int. Ed. 2005, 44, 7560 –7564
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7563