A. Bernardi, J. JimØnez-Barbero et al.
FULL PAPER
1808) and translate (max. 1 ) within the binding site (MOLS command
of Batchmin). 10000 MC/EM steps were performed. Bulk water solvation
was simulated by using the GB/SA model. Five crystallographic water
molecules were retained, as previously described.[4,35] All calculations
were carried out on a B2 (B+B(+1)) dimer. Only the ligand and a shell
of residues surrounding the binding site of LT were subjected to energy
minimization. All the residues within 6 of the sugars were completely
included in the shell. An all-atom treatment was used for the ligand and
for the aromatic residues of the protein. The rest of the toxin was treated
with a united-atom model. The ligand and all of the binding site polar hy-
droxy and amino hydrogen atoms were unconstrained during energy min-
imization. All other atoms that belonged to the substructure being mini-
mized were constrained to their crystallographic coordinates by parabolic
restraining potentials that increased with the distance from the sugar sub-
[7] D. Arosio, S. Baretti, S. Cattaldo, S. Potenza, A. Bernardi, Bioorg.
Med. Chem. Lett. 2003, 13, 3831–3834.
[8] A. Bernardi, D. Potenza, A. M. Capelli, A. García-Herrero, F. J.
Caæada, J. JimØnez-Barbero, Chem. Eur. J. 2002, 8, 4597–4612.
[9] A. A. Bothner-By, R. Gassend, Ann. N.Y. Acad. Sci. 1973, 222, 668–
676.
[10] P. L. Jackson, H. N. Moseley, N. R. Krishna, J. Magn. Reson. Ser. B
1995, 107, 289–292; V. L. Bevilacqua, D. S. Thomson, J. H. Preste-
gard, Biochemistry 1990, 29, 5529–5537; V. L. Bevilacqua, Y. Kim,
J. H. Prestegard, Biochemistry 1992, 31, 9339–9349; H. Kogelberg,
D. Solís, J. JimØnez-Barbero, Curr. Opin. Struct. Biol. 2003, 13, 646–
653;
[11] A. Schon, E. Freire, Biochemistry 1989, 28, 5019–5024.
[12] M. B. Khalil, M. Kates, D. Carrier, Biochemistry 2000, 39, 2980–
2988.
[13] K. Bock, J. O. Duus, J. Carbohydr. Chem. 1994, 13, 513–543.
[14] D. Neuhaus, M. P. Williamson, The NOE Effect in Structural and
Conformational Analysis, VCH, New York, 1989.
[15] T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc. 1992, 114, 3157–3158.
[16] NMR Spectroscopy of Glycoconjugates (Eds.: J. JimØnez-Barbero, T.
Peters), VCH, Weinheim, 2002.
[17] J. Dabrowski, T. Kozar, H. Grosskurth, N. E. Nifantꢁev, J. Am.
Chem. Soc. 1995, 117, 5534–5539.
[18] A. Bernardi, D. Arosio, L. Manzoni, D. Monti, H. Posteri, D. Poten-
za, S. Mari, J. J. Barbero, Org. Biomol. Chem. 2003, 1, 785–792.
[19] P. Brocca, A. Bernardi, L. Raimondi, S. Sonnino, Glycoconjugate J.
2000, 17, 283–299.
[20] N. K. Vyas, Curr. Opin. Struct. Biol. 1991, 1, 732–740.
[21] F. A. Quiocho, Biochem. Soc. Trans. 1993, 21, 442–448.
[22] W. I. Weis, K. Drickamer, Annu. Rev. Biochem. 1996, 65, 441–473.
[23] S. Elgavish, B. Shaanan, J. Mol. Biol. 1998, 277, 917–932.
[24] J. Jimenez-Barbero, J. L. Asensio, F. J. Caæada, A. Poveda, Curr.
Opin. Struct. Biol. 1999, 9, 549–555.
[25] H. C. Kolb, B. Ernst, Chem. Eur. J. 1997, 3, 1571–1578.
[26] M. Meyer, B. Meyer, Angew. Chem. 1999, 111, 1902–1906; Angew.
Chem. Int. Ed. 1999, 38, 1784–1788.
[27] J. Klein, R. Meinecke, M. Meyer, B. Meyer, J. Am. Chem. Soc. 1999,
121, 5336–5337.
[28] M. Vogtherr, T. Peters, J. Am. Chem. Soc. 2000, 122, 6093–6099.
[29] J. L. Asensio, F. J. Caæada, J. Jimenez-Barbero, Eur. J. Biochem.
1995, 233, 618–630.
ꢁ2
strate. The following force constants were used: 100 kJ for atoms
ꢁ2
within 0–3 of any atom of the ligand; 200 kJ for atoms within 3–
ꢁ2
4 ; 400 kJ for atoms within 4–5 . The periphery of the restrained
structure was checked with the EdgeD command of MacroModel, and
isolated atoms were included to avoid incomplete functional groups. All
other atoms were ignored.
MC/SD dynamics of the LT:ligand complexes: The simulations were car-
ried out by using the same substructure and explicit MC variables descri-
bed above, but with the lowest energy conformation from the MC/EM
searchas the starting point. Extended nonbonded cut-offs were employed
(van der Waals and electrostatic cut-off of 25 , hydrogen-bond cut-off
of 15 ). The simulations were performed for 1 ns, at 300 K, with a dy-
namic time step of 1 fs and a frictional coefficient of 0.1 psꢁ1. Structures
were sampled every 2 ps and saved for later evaluation.
Acknowledgments
The project was supported by the Azioni Integrate program between
Italy and Spain, and the European programs COST-D13 and “Improving
Human Potential” under contract HPRNCT-2002-00173 (Glycidic Scaf-
folds Network). I.S.-M. acknowledges a Marie Curie Fellowship from the
European Community program ꢁImproving Human Potentialꢁ under con-
tract HPMT-CT-2001-00293. The Madrid group also acknowledges the
Ministery of Science and Technology of Spain for funding (Grant
BQU2003–03550-C01).
[30] D. Roy, C. Mukhopadhyay, J. Biomol. Struct. Dyn. 2002, 19, 1121–
1132.
[31] B. Lanne, B. Schierbeck, J. Angstrom, J. Biochem. 1999, 126, 226–
234.
[32] A. Poveda, J. L. Asensio, M. Martín-Pastor, J. Jimenez-Barbero, J.
Biomol. NMR 1997, 10, 29–43.
[33] F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M.
Lipton, C. Caufield, G. Chang, T. Hendrickson, W. C. Still, J.
Comput. Chem. 1990, 11, 440–467.
[34] W. C. Still, A. Tempzyk, R. Hawley, T. Hendrickson, J. Am. Chem.
Soc. 1990, 112, 6127–6129.
[1] P. Sears, C. H. Wong, Angew. Chem. 1999, 111, 2446–2471; Angew.
Chem. Int. Ed. 1999, 38, 2300–2324, and references therein.
[2] C.-L. Schengrund, N. J. Ringler, J. Biol. Chem. 1989, 264, 13233–
13237.
[3] E. A. Merritt, S. Sarfaty, F. van den Akker, C. LꢁHoir, J. A. Martial,
W. G. J. Hol, Protein Sci. 1994, 3, 166–175; E. A. Merrit, T. K.
Sixma, K. H. Kalk, B. A. M. Van Zanten, W. G. J. Hol, Mol. Micro-
biol. 1994, 13, 745–753; E. A. Merrit, S. Sarfaty, M. G. Jobling, T.
Chang, R. K. Holmes, W. G. J. Hol, Protein Sci. 1997, 6, 1516–1528.
[4] A. Bernardi, A. Checchia, P. Brocca, S. Sonnino, F. Zuccotto, J. Am.
Chem. Soc. 1999, 121, 2032–2036.
[35] A. Bernardi, L. Raimondi, F. Zuccotto, J. Med. Chem. 1997, 40,
1855–1862.
[36] F. Guarnieri, W. C. Still, J. Comput. Chem. 1994, 15, 1302–1310.
[5] A. Bernardi, G. Boschin, A. Checchia, M. Lattanzio, L. Manzoni, D.
Potenza, C. Scolastico, Eur. J. Org. Chem. 1999, 1311–1317.
[6] A. Bernardi, L. Carrettoni, A. Grosso Ciponte, D. Monti, S. Sonni-
no, Bioorg. Med. Chem. Lett. 2000, 10, 2197–2200.
Received: January 26, 2004
Revised: May 3, 2004
Published online: July 27, 2004
4406
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2004, 10, 4395 – 4406