1698
S. H. Kim et al. / Tetrahedron Letters 50 (2009) 1696–1698
O
allyl bromide
Ph
NH
COOMe
CN
KCN, H2O
rt, 20 h
In, THF
Ph
Ph
1c
6a (68%)
7a (67%)
allyl bromide
In, THF
OAc
KCN, H2O
rt, 12 h
Ph
CN
CN
Ph
N
CN
6b (88%)
H2N
1e
7b (49%)
Scheme 3.
O
crotyl bromide (4.0 equiv)
In (2.0 equiv), THF, reflux, 30 h
Ph
NH
+
6a (61%)
6a
7c (10%)
COOEt
allyl bromide
K2CO3, CH3CN
allyl bromide
In, THF
Ph
CN
no reaction
3a
COOMe
8 (87%)
Scheme 4.
2007, 9, 3631–3634; (f) Lee, K. Y.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007, 48,
2007–2011.
7. Typical procedure for the synthesis of compounds 3a, 4a and 5a: A mixture of
compound 1a (248 mg, 1.0 mmol), methyl cyanoacetate (297 mg, 3.0 mmol),
and K2CO3 (207 mg, 1.5 mmol) in CH3CN (3 mL) was stirred at room
temperature for 2 h. After the usual aqueous workup and column
chromatographic purification process (hexanes/EtOAc, 8:1), we obtained
compound 3a (195 mg, 68%) as colorless oil. A stirred mixture of compound
3a (144 mg, 0.5 mmol), allyl bromide (242 mg, 2.0 mmol), and indium
(114 mg, 1.0 mmol) in THF (1.5 mL) was heated to reflux for 30 min. After
the usual aqueous workup and column chromatographic purification process
(hexanes/CH2Cl2/EtOAc, 16:2:1), we obtained compound 4a (23 mg, 16%) and
compound 5a (93 mg, 58%). Other compounds were synthesized similarly and
the spectroscopic data of 3a, 4a, 5a, and 7a are as follows:Compound 3a: 68%;
O
N Mes
Cl
Ph
NH
Grubbs catalyst (3 mol%)
toluene, 50 ºC, 10 h
Mes
N
Ru
5a
Cl
Ph
COOMe
PCy3
9 (84%)
Scheme 5.
References and notes
colorless oil; IR (film) 2958, 2251, 1751, 1703, 1259 cmÀ1 1H NMR (CDCl3,
;
300 MHz) d 1.37 (t, J = 7.2 Hz, 3H), 3.16–3.19 (m, 2H), 3.75 (s, 3H), 4.12 (dd, J =
8.7 and 7.5 Hz, 1H), 4.31 (q, J = 7.2 Hz, 2H), 7.34–7.45 (m, 5H), 7.98 (s, 1H); 13C
NMR (CDCl3, 75 MHz) d 14.2, 27.6, 36.1, 53.4, 61.4, 115.9, 126.8, 128.7, 128.9,
129.0, 134.4, 144.1, 166.0, 168.8.Compound 4a: 16%; yellow solid, mp 128–
1. For the general review on indium-mediated reactions, see: (a) Auge, J.; Lubin-
Germain, N.; Uziel, J. Synthesis 2007, 1739–1764; (b) Li, C.-J.; Chan, T.-H.
Tetrahedron 1999, 55, 11149–11176; (c) Pae, A. N.; Cho, Y. S. Curr. Org. Chem.
2002, 6, 715–737.
129 °C; IR (KBr) 3211, 1709, 1642, 1229 cmÀ1 1H NMR (CDCl3, 300 MHz) d
;
2. For the indium-mediated Barbier type allylation of imine, acylimine,
sulfonimine and related compounds, see: (a) Vilaivan, T.; Winotapan, C.;
Banphavichit, V.; Shinada, T.; Ohfune, Y. J. Org. Chem. 2005, 70, 3464–3471;
(b) Schneider, U.; Chen, I.-H.; Kobayashi, S. Org. Lett. 2008, 10, 737–740; (c)
Kumar, H. M. S.; Anjaneyulu, S.; Reddy, E. J.; Yadav, J. S. Tetrahedron Lett. 2000,
41, 9311–9314; (d) Piao, X.; Jung, J.-K.; Kang, H.-Y. Bull. Korean Chem. Soc. 2007,
28, 139–142; (e) Ritson, D. J.; Cox, R. J.; Berge, J. Org. Biomol. Chem. 2004, 2,
1921–1933; (f) Lu, W.; Chan, T. H. J. Org. Chem. 2000, 65, 8589–8594.
3. (a) Fujiwara, N.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 4729–4732; (b)
Fujiwara, N.; Yamamoto, Y. J. Org. Chem. 1999, 64, 4095–4101.
4. For the general review on Baylis–Hillman chemistry, see: (a) Basavaiah, D.; Rao,
A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–891; (b) Kim, J. N.; Lee, K. Y.
Curr. Org. Chem. 2002, 6, 627–645; (c) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull.
Korean Chem. Soc. 2005, 26, 1481–1490; (d) Singh, V.; Batra, S. Tetrahedron 2008,
64, 4511–4574. and further references cited therein.
3.56–3.59 (m, 2H), 3.75 (s, 3H), 3.79–3.80 (m, 2H), 5.18–5.34 (m, 2H), 5.78–
5.91 (m, 1H), 7.30–7.50 (m, 5H), 7.82 (t, J = 2.7 Hz, 1H), 7.86 (s, 1H); 13C NMR
(CDCl3, 75 MHz) d 28.2, 36.0, 51.5, 101.9, 119.4, 125.4, 128.6, 129.0, 130.4,
132.6, 135.0, 138.1, 144.6, 165.3, 167.0; ESIMS m/z 284 (M++1). Anal. Calcd for
C17H17NO3: C, 72.07; H, 6.05; N, 4.94. Found: C, 72.43; H, 6.35; N,
4.88.Compound 5a: 58%; pale yellow solid, mp 113–114 °C; IR (KBr) 3178,
1734, 1668, 1614, 1396 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.33–2.57 (m, 4H),
;
2.90–2.97 (m, 1H), 3.09–3.12 (m, 2H), 3.70 (s, 3H), 5.16–5.25 (m, 4H), 5.76–
5.92 (m, 2H), 6.20 (s, 1H), 7.29–7.42 (m, 5H), 7.85 (s, 1H); 13C NMR (CDCl3,
75 MHz) d 25.7, 41.1, 42.6, 45.1, 51.9, 57.5, 120.7 (2C), 126.1, 128.4, 128.5,
129.9, 131.6, 131.6, 135.3, 137.3, 165.8, 172.0; ESIMS m/z 326 (M++1). Anal.
Calcd for C20H23NO3: C, 73.82; H, 7.12; N, 4.30. Found: C, 73.75; H, 7.34; N,
4.45.Compound 7a: 67%; pale yellow solid, mp 115–116 °C; IR (KBr) 3201,
1693, 1651 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.27–2.44 (m, 4H), 2.93 (d, J =
;
1.8 Hz, 2H), 5.13–5.20 (m, 4H), 5.72–5.86 (m, 2H), 6.23 (s, 1H), 7.31–7.48 (m,
6H); 13C NMR (CDCl3, 75 MHz) d 37.3, 44.8, 58.6, 120.1, 128.7, 128.7, 129.6,
130.4, 131.0, 132.0, 135.6, 170.9; ESIMS m/z 254 (M++1). Anal. Calcd for
C17H19NO: C, 80.60; H, 7.56; N, 5.53. Found: C, 80.53; H, 7.76; N, 5.72.
5. For the synthesis of starting materials and similar pyridine derivatives from
Baylis–Hillman adducts, see: (a) Kim, S. H.; Kim, K. H.; Kim, H. S.; Kim, J. N.
Tetrahedron Lett. 2008, 49, 1948–1951; (b) Zhong, W.; Lin, F.; Chen, R.; Su, W.
Synthesis 2008, 2561–2568; (c) Im, Y. J.; Kim, J. M.; Kim, J. N. Bull. Korean Chem.
Soc. 2002, 23, 1361–1362; (d) Hong, W. P.; Lim, H. N.; Park, H. W.; Lee, K-J. Bull.
Korean Chem. Soc. 2005, 26, 655–657.
8. Compound 9: 84%; pale yellow solid, mp 132–133 °C; IR (film) 3171, 1733,
1668, 1613, 1394 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.44–2.49 (m, 2H), 2.82–
;
6. For the synthesis of similar lactam derivatives and their synthetic applications,
see: (a) Pohmakotr, M.; Yotapan, N.; Tuchinda, P.; Kuhakarn, C.; Reutrakul, V. J.
Org. Chem. 2007, 72, 5016–5019; (b) Yang, T.; Campbell, L.; Dixon, D. J. J. Am.
Chem. Soc. 2007, 129, 12070–12071; (c) Doan, H. D.; Gore, J.; Vatele, J.-M.
Tetrahedron Lett. 1999, 40, 6765–6768; (d) Zhou, C.-Y.; Che, C.-M. J. Am. Chem.
Soc. 2007, 129, 5828–5829; (e) Gilley, C. B.; Buller, M. J.; Kobayashi, Y. Org. Lett.
3.13 (m, 5H), 3.66 (s, 3H), 5.66–5.71 (m, 2H), 6.30 (s, 1H), 7.30–7.44 (m, 5H),
7.86 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 27.0, 43.0, 46.5, 47.0, 52.1, 63.3, 126.2,
127.4, 128.4, 128.5, 128.7, 129.9, 135.4, 137.3, 165.3, 172.1; ESIMS m/z 298
(M++1). For similar spiro-pyridone synthesis, see: Kersten, L.; Taylor, R. H.;
Felpin, F.-X. Tetrahedron Lett. 2009, 50, 506–508.