SHORT PAPER
Synthesis of Obtusenyne
3201
supplying spectroscopic data for 17 and 1. We thank the ARC,
VESKI and CSIRO for support.
1H NMR chiral shift reagent [(+)-Eu(hfc)3] analysis, with the
absolute configuration being assigned by comparison of the
optical rotation of the allylic alcohol with that of its
enantiomer.12 The enantiomeric excess of (+)-2 was
confirmed by Mosher ester analysis of the secondary alcohol
formed by the treatment of 3 with TBAF.
References
(1) King, T. J.; Imre, S.; Öztunc, A. Tetrahedron Lett. 1979, 20,
1453.
(2) Howard, B. M.; Schulte, G. R.; Fenical, W.; Solheim, B.;
(12) Burgess, K.; Henderson, I. Tetrahedron: Asymmetry 1990,
1, 57.
(13) Mohr, P.; Rösslein, L.; Tamm, C. Tetrahedron Lett. 1989,
30, 2513.
(14) The relative stereochemistry of the racemic diol ( )-7 was
determined by 1H NMR NOE and coupling constant analysis
of the derived acetonide.9c
(15) Congreve, M. S.; Davison, E. C.; Fuhry, M. A. M.; Holmes,
A. B.; Payne, A. N.; Robinson, R. A.; Ward, S. E. Synlett
1993, 663.
Clardy, J. Tetrahedron 1980, 36, 1747.
(3) Elliott, M. C. Contemp. Org. Synth. 1994, 1, 457.
(4) Total syntheses of obtusenyne: (a) Fujiwara, K.; Awakura,
M.; Tsunashima, M.; Nakamura, A.; Honma, T.; Murai, A.
J. Org. Chem. 1999, 64, 2616. (b) Crimmins, M. T.; Powell,
M. T. J. Am. Chem. Soc. 2003, 125, 7592.
(5) Total synthesis of brasilenyne and citation of important
contributions in the field: (a) Denmark, S. E.; Yang, S.-M. J.
Am. Chem. Soc. 2002, 124, 2102. (b) Denmark, S. E.; Yang,
S.-M. J. Am. Chem. Soc. 2004, 126, 12432; and references
cited therein.
(16) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33, 4345.
(17) Bendall, J. G.; Payne, A. N.; Screen, T. E. O.; Holmes, A. B.
Chem. Commun. 1997, 1067.
(18) NMR data for synthetic 1: 1H NMR (500 MHz, C6D6,
50 °C): d = 5.92 (dt, 1 H, J = 10.8, 7.3 Hz), 5.53–5.43 (m, 3
H), 4.20–4.13 (m, 1 H), 3.90 (dt, 1 H, J = 10.8, 2.8 Hz), 3.77
(dt, 1 H, J = 10.8, 3.0 Hz), 3.74–3.68 (m, 1 H), 3.02 (ddt, 1
H, J = 14.2, 1.2, 7.1 Hz), 2.92 (d, 1 H, J = 2.0 Hz), 2.87 (dt,
1 H, J = 14.7, 7.0 Hz), 2.78–2.62 (br m, 2 H), 2.52 (ddd, 1 H,
J = 12.9, 6.5, 3.0 Hz), 2.40 (ddd, 1 H, J = 13.2, 6.6, 2.9 Hz),
1.91 (dqn, 1 H, J = 14.2, 7.4 Hz), 1.74 (dqn, 1 H, J = 14.2,
7.4 Hz), 0.85 (t, 1 H, J = 7.4 Hz). 13C NMR (125 MHz, C6D6,
34 °C): d = 140.7 (C-4), 110.7 (C-3), 82.8 (C-1), 80.1 (C-2),
63.3 (C-7), 56.6 (C-12), 35.3 (C-5), 32.0 (C-8), 31.2 (br, C-
11), 28.7 (C-14), 10.1 (C-15). Owing to the conformational
mobility of the natural product the signals due to C-6 and C-
13 in the 13C NMR spectrum were broadened to the baseline.
Signals assignable to C-9 and C-10 were obscured by
solvent.
(6) Boeckman, R. K.; Zhang, J.; Reeder, M. R. Org. Lett. 2002,
4, 3891.
(7) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
(8) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.; Bendall,
J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997, 119, 7483; and
references cited therein.
(9) (a) Curtis, N. R.; Holmes, A. B.; Looney, M. G. Tetrahedron
1991, 47, 7171. (b) Curtis, N. R.; Holmes, A. B.; Looney,
M. G. Tetrahedron Lett. 1992, 33, 671. (c) Curtis, N. R.;
Holmes, A. B. Tetrahedron Lett. 1992, 33, 675.
(10) All new compounds exhibited satisfactory spectroscopic and
exact mass/elemental analysis data.
(11) The enantiomeric excess and absolute configuration of (+)-2
were determined by analysis of the elimination product
methyl (4R,2E)-hydroxyhex-2-enoate that was formed in
86% yield by the treatment of (+)-2 with DBU. The
enantiomeric excess of the allylic alcohol was determined by
Synthesis 2005, No. 19, 3199–3201 © Thieme Stuttgart · New York