C O M M U N I C A T I O N S
have a broad range of applications including electron transfer
systems, molecular sensors and electronics, and liquid crystalline
materials. We are currently exploring these avenues.
Acknowledgment. We thank Daniel A. Scheiman and Javier
Santos for helpful discussions. F.I. and D.S.T. are supported by
NASA Cooperative Agreements NCC3-887 and NCC3-1089. This
work was funded by the Alternative Energy Foundations Technolo-
gies subproject of the Low Emissions Alternative Propulsion project
at NASA Glenn. We thank the College of Arts and Sciences of the
University of Toledo for generous financial support of the X-ray
diffraction facility.
Note Added after ASAP Publication. After this paper was
published ASAP on December 23, 2005, the Scheme 1 title was
corrected. The corrected version was published ASAP January 6,
2006.
Figure 3. Absorption (solid line) and normalized emission (425 nm excit)
spectra (dotted line) of 1 in CH2Cl2. (Inset): Emission from 1 in a pure
microcrystalline sample (left), in a polystyrene film (center), and in CH2-
Cl2 solution (right) excited with a hand-held, broadband UV source.
Supporting Information Available: Synthetic and crystallographic
details. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Weiss, E. A.; Sinks, L. E.; Lukas, A. S.; Chernick, E. T.; Ratner, M.
A.; Wasielewski, M. R. J. Phys. Chem. B 2004, 108, 10309-10316. (b)
Sinks, L. E.; Wasielewski, M. R. J. Phys. Chem. A 2003, 107, 611-620.
(c) Giaimo, J. M.; Gusev, A. V.; Wasielewski, M. R. J. Am. Chem. Soc.
2002, 124, 8530-8531. (d) Gosztola, D.; Niemczyk, M. P.; Svec, W.;
Lukas, A. S.; Wasielewski, M. R. J. Phys. Chem. A 2000, 104, 6545-
6551.
(2) (a) Liu, S.-G.; Sui, G.; Cormier, R. A.; Leblanc, R. M.; Gregg, B. A. J.
Phys. Chem. B 2002, 106, 1307-1315. (b) Wu¨rthner, F.; Thalacker, C.;
Diele, S.; Tschierske, C. Chem. Eur. J. 2001, 7, 2245-2253. (c) Rohr,
U.; Schilichting, P.; Bohm, A.; Gross, M.; Meerholz, K.; Brauchle, C.;
Mu¨llen, K. Angew. Chem., Int. Ed. 1998, 37, 1434-1437. (d) Mu¨ller, G.
R. J.; Meiners, C.; Enkelmann, V.; Geerts, Y.; Mullen, K. J. Mater. Chem.
1998, 8, 61-64.
Figure 4. ORTEP (50% probability) of 1. (Left) Top view. (Right) Side
view (pendant groups have been removed for clarity).
(3) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J.
Chem. ReV. 2005, 105, 1491-1546.
and ferrocene as an internal potential marker, reveals two revers-
ible12 reduction potentials at -1.08 and -1.30 V, ca. 600 mV lower
than similar linear bisimides.1d
(4) (a) Ferrere, S.; Zaban, A.; Gregg, B. A. J. Phys. Chem. 1997, 101, 4490-
4493. (b) Tsuzuki, T.; Hirota, N.; Noma, N.; Shirota, Y. Thin Solid Films
1996, 273, 177-180.
(5) (a) Zang, L.; Liu, R.; Holman, M. W.; Nguyen, K. T.; Adams, D. M. J.
Am. Chem. Soc. 2002, 124, 10640-10641. (b) Mohr, G. J.; Spichiger, U.
E.; Jona, W.; Langhals, H. Anal. Chem. 2000, 72, 1084-1087.
(6) (a) Langhals, H.; Ismael, R.; Yu¨ru¨k, O. Tetrahedron 2000, 56, 5435-
4541. (b) Langhals, H.; Jona, W. Angew. Chem., Int. Ed. 1998, 37, 952-
955. (c) Langhals, H.; Jona, W. Eur. J. Org. Chem. 1998, 847-851.
(7) Wu¨rthner. F.; Stepanenko, V.; Chen, Z.; Saha-Mo¨ller, C. R.; Kocher, N.;
Stalke, D. J. Org. Chem. 2004, 69, 7933-7939.
X-ray crystallographic analysis of single crystals of 1, grown
from slow evaporation of benzene, revealed a substantial twist
(19.5°) in the perylene core between each naphthyl unit (Figure
4).13 This is not unexpected, as previous reports have shown that
highly substituted perylenes are twisted, whereas unstrained deriva-
tives are essentially flat.14 Steric crowding in 1 also results in
elongation (1.474(3) Å) of the C-C bonds connecting the naphthyl
units, indicating development of single-bond character and loss of
aromaticity. These data are consistent with the observed slight blue-
shift in the absorption and emission spectra of 1 relative to those
of the less crowded linear perylene bisimides. The unit cell of 1
consists of columnar structures of perylenes alternating with n-octyl
chains from the perylene bisimide on an adjacent column. The
observation of excimer emission from crystalline 1 is somewhat
surprising given the large distance (8.2 Å with intercalated aliphatic
chains) between perylenes in these columns.
We have reported the first synthesis of a Z-shaped perylene
bisimide. As a key step, the Diels-Alder trapping of photochemi-
cally generated o-xylylenols was utilized. This versatile chemistry
will enable the preparation of an array of new perylene bisimides
with various functionalities on the imide rings and pendant phenyl
groups. Despite the twisting of the perylene core, perylene bisimide
1 displays absorption and emission behavior similar to that of
conventional linear perylene bisimides. These new bisimides should
(8) (a) Yang, N. C.; Rivas, C. J. J. Am. Chem. Soc. 1961, 83, 2213. (b)
Sammes, P. G. Tetrahedron 1976, 32, 405-422.
(9) (a) Tyson, D. S.; Ilhan, F.; Smith, D.; Meador, M. A. B.; Meador, M. A.
Macromolecules 2005, 38, 3638-3646. (b) Ilhan, F.; Tyson, D. S.;
Meador, M. A. Chem. Mater. 2004, 16, 2978-2980. (c) Meador, M. A.
B.; Meador, M. A.; Williams, L. L.; Scheiman, D. A. Macromolecules
1996, 29, 8983-86.
(10) Meador, M. A. Spectrum 2003, 16, 22-29.
(11) These data are comparable to related linear perylene bisimides. For
example: (a) Chao, C.-C.; Leung, M.-K.; Su, Y. O.; Chiu, K.-Y.; Lin,
T.-H.; Shieh, S.-J.; Lin, S.-C. J. Org. Chem. 2005, 70, 4323-4331. (b)
Ford, W. E.; Hiratsuka, H.; Kamat, P. V. J. Phys. Chem. 1989, 93, 6692-
6696 and references therein.
(12) (a) Debad, J. D.; Morris, J. C.; Lynch, V.; Magnus, P.; Bard, A. J. J. Am.
Chem. Soc. 1996, 118, 2374-2379. (b) Debad, J. D.; Morris, J. C.;
Magnus, P.; Bard, A. J. J. Org. Chem. 1997, 62, 530-5337. (c) Faulkner,
L. R.; Bard, A. J. Electroanalytical Chemistry; Bard, A. J. Ed.; Marcel
Dekker: New York, 1977; Vol 10.
(13) Although conformational disorder present in the pendant octyl and phenyl
groups, the perylene core is well defined. 4: monoclinic, C2/c, a )
22.0080(12) Å, b ) 8.2920 (5) Å, c ) 22.3830(12) Å, â ) 93.089(1)°.
Final R indices [I > 2σ(I)] R1 ) 0.0583, wR2 ) 0.1502.
(14) (a) Sadrai, M.; Bird, G. R.; Potenza, J. A.; Schugar, H. J. Acta Crystallogr.
1990, C46, 637-640. (b) Klebe, G.; Graser, F.; Ha¨dicke, E.; Berndt, J.
Acta Crystallogr. 1989, B45, 69-77.
JA056912O
9
J. AM. CHEM. SOC. VOL. 128, NO. 3, 2006 703