Organic Letters
Letter
residues that further confirm the occurrence of closed β-turns.20
Scheme 2C depicts the NMR structure of peptide 9, featuring a
β-hairpin conformation with the two amide N-substituents
pointing toward the opposite faces of Orn side chains.
́
(4) Vasco, A. V.; Perez, C. S.; Morales, F. E.; Garay, H. E.; Vasilev, D.;
Gavín, J. A.; Wessjohann, L. A.; Rivera, D. G. Macrocyclization of
peptide side chains by the Ugi reaction: achieving peptide folding and
exocyclic N-functionalization in one shot. J. Org. Chem. 2015, 80,
6697−6707.
In conclusion, we have developed a new type of cyclic β-
hairpin peptide by proving that the incorporation of N-alkylated
AA residues by Ugi reactions may induce β-turn conformations
and thereby stabilize the β-hairpin architecture. Our results
suggest that the combination of N-alkylated D-Phe at i+1 with
Pro, Gly, and even Aib at i+2 enables us to mimic type-II′ β-turn
motifs, as found in GS. Thus the incorporation of these
fragments opposite to the native D-Phe-Pro keeps the overall β-
hairpin conformation of GS. The substitution of Pro (i+2) by N-
alkylated Ala (but not Aib) also leads to a β-hairpin
conformation, in which the D-Phe-N-(Alkyl)Ala sequence
induces a β-turn, but not of type II′. Nonetheless, the Ugi-
derived β-turn equally imposes the antiparallel alignment of the
two β-strands in a β-sheet structure, thus forming a cyclic β-
hairpin. In this sense, the Ugi reaction-based approach allows for
the stabilization of the β-hairpin and the simultaneous
functionalization of the β-turn motifs. This exo-cyclic
modification can be used not only to modulate the bioactivity
by adding additional cationic or hydrophobic tails but also to
install bioconjugation handles, fluorescent and affinity tags, and
so on.
(5) Frost, J. R.; Scully, C. C. G.; Yudin, A. K. Oxadiazole grafts in
peptide macrocycles. Nat. Chem. 2016, 8, 1105−1111.
(6) Hili, R.; Rai, V.; Yudin, A. K. Macrocyclization of linear peptides
enabled by amphoteric molecules. J. Am. Chem. Soc. 2010, 132, 2889−
2891.
(7) Appavoo, S. D.; Kaji, T.; Frost, J. R.; Scully, C. C. G.; Yudin, A. K.
Development of endocyclic control elements for peptide macrocycles. J.
Am. Chem. Soc. 2018, 140, 8763−8770.
(8) Zaretsky, S.; Scully, C. C. G.; Lough, A. J.; Yudin, A. K. Exocyclic
control of turn induction in macrocyclic peptide scaffolds. Chem. - Eur.
J. 2013, 19, 17668−17672.
(9) Robinson, J. A. β-Hairpin peptidomimetics: design, structures and
biological activities. Acc. Chem. Res. 2008, 41, 1278−1288.
(10) Pal, S.; Ghosh, U.; Ampapathi, R. S.; Chakraborty, T. K. Recent
Studies on Gramicidin S Analog Structure and Antimicrobial Activity.
In Peptidomimetics II. Topics in Heterocyclic Chemistry; Lubell, W., Eds.;
Springer: Cham, Switzerland, 2015; Vol. 49, pp 159−202.
(11) Xiao, J.; Weisblum, B.; Wipf, P. Electrostatic versus steric effect in
Peptidomimicry: Secondary structure analysis of Gramicidin S
Analogues with (E)-Alkene Dipeptide Isosteres. J. Am. Chem. Soc.
2005, 127, 5742−5743.
(12) Yamada, K.; Kodaira, M.; Shinoda, S.; Komagoe, K.; Oku, H.;
Katakai, R.; Katsu, T.; Matsuo, I. Structure−activity relationships of
gramicidin S analogs containing (β-3-pyridyl)-α,β-dehydroalanine
residues on membrane permeability. MedChemComm 2011, 2, 644−
649.
ASSOCIATED CONTENT
* Supporting Information
■
S
(13) Grotenbreg, G. M.; Timmer, M. S.; Llamas-Saiz, A. L.; Verdoes,
M.; van der Marel, G. A.; van Raaij, M. J.; Overkleeft, H. S.; Overhand,
M. An Unusual Reverse Turn Structure Adopted by a Furanoid Sugar
Amino Acid Incorporated in Gramicidin S. J. Am. Chem. Soc. 2004, 126,
3444−3446.
The Supporting Information is available free of charge on the
Experimental procedures, RP-HPLC chromatograms,
NMR, and HR-ESI-MS spectra of cyclic peptides
́
(14) Rivera, D. G.; Vasco, A. V.; Echemendía, R.; Concepcion, O.;
́
Perez, C. S.; Gavín, J. A.; Wessjohann, L. A. A Multicomponent
Conjugation Strategy to Unique N-Steroidal Peptides: First Evidence of
the Steroidal Nucleus as a β-Turn Inducer in Acyclic Peptides. Chem. -
Eur. J. 2014, 20, 13150−13161.
AUTHOR INFORMATION
Corresponding Authors
■
́
(15) Puentes, A. R.; Morejon, M. C.; Rivera, D. G.; Wessjohann, L. A.
ORCID
Peptide macrocyclization assisted by traceless turn inducers derived
from Ugi peptide ligation with cleavable and resin-linked amines. Org.
Lett. 2017, 19, 4022−4025.
(16) Li, Y.; Bionda, N.; Yongye, A.; Geer, P.; Stawikowski, M.; Cudic,
P.; Martinez, K.; Houghten, R. A. Dissociation of Antimicrobial and
Hemolytic Activities of Gramicidin S through N - Methylation
Modification. ChemMedChem 2013, 8, 1865−1872.
Author Contributions
§M.G.R. and A.V.V. contributed equally.
(17) Alsina, J.; Rabanal, F.; Giralt, E.; Albericio, F. Solid-Phase
Synthesis of “Head-to-Tail” Cyclic Peptides via Lysine Side-Chain
Anchoring. Tetrahedron Lett. 1994, 35, 9633−9636.
Notes
The authors declare no competing financial interest.
(18) Andreu, D.; Ruiz, S.; Carreno, C.; Alsina, J.; Albericio, F.;
̃
́
́
́
Jimenez, M. A.; de la Figuera, N.; Herranz, R.; García-Lopez, M. T.;
ACKNOWLEDGMENTS
■
́
Gonzalez-Muniz, R. IBTM-Containing Gramicidin S Analogues :
̃
Evidence for IBTM as a Suitable Type II′ β-Turn Mimetic. J. Am.
Chem. Soc. 1997, 119, 10579−10586.
A.V.V. and D.G.R. are grateful to DAAD, Germany for Ph.D. and
University Academics fellowships, respectively. Dedicated to
Prof. Dr. Armin de Meijere on the occasion of his 80th birthday.
(19) Wadhwani, P.; Afonin, S.; Ieronimo, M.; Buerck, J.; Ulrich, A. S.
Optimized Protocol for Synthesis of Cyclic Gramicidin S: Starting
Amino Acid Is Key to High Yield. J. Org. Chem. 2006, 71, 55−61.
(20) Gibbs, A. C.; Bjorndahl, T. C.; Hodges, R. S.; Wishart, D. S.
Probing the Structural Determinants of Type II ′ β-Turn Formation in
Peptides and Proteins. J. Am. Chem. Soc. 2002, 124, 1203−1213.
REFERENCES
■
(1) Reguera, L.; Rivera, D. G. Multicomponent Reaction Toolbox for
Peptide Macrocyclization and Stapling. Chem. Rev. 2019,
(2) White, C. J.; Yudin, A. K. Contemporary strategies for peptide
macrocyclization. Nat. Chem. 2011, 3, 509−524.
́
(3) Vasco, A. V.; Mendez, Y.; Porzel, A.; Balbach, J.; Wessjohann, L.
A.; Rivera, D. G. A Multicomponent stapling approach to exocyclic
functionalized helical peptides: adding lipids, sugars, PEGs, labels, and
handles to the lactam bridge. Bioconjugate Chem. 2019, 30, 253−259.
D
Org. Lett. XXXX, XXX, XXX−XXX