Organometallics 2006, 25, 3605-3610
3605
Ethylene Trimerization with Cr-PNP and Cr-SNS Complexes:
Effect of Ligand Structure, Metal Oxidation State, and Role of
Activator on Catalysis
David S. McGuinness,*,† David B. Brown,† Robert P. Tooze,† Fiona M. Hess,‡
John T. Dixon,‡ and Alexandra M. Z. Slawin
Sasol Technology (UK) Ltd, Purdie Building, North Haugh, St. Andrews, KY16 9ST, U.K., Sasol
Technology (Pty) Ltd, R&D DiVision, 1 Klasie HaVenga Road, Sasolburg, 1947, South Africa, and School
of Chemistry, UniVersity of St. Andrews, Purdie Building, St. Andrews, KY16 9ST, U.K.
ReceiVed February 3, 2006
Selected PNP and SNS ethylene trimerization ligands have been coordinated to CrII and CrIII, and
further reactions of these complexes have been studied. The ligands are easily deprotonated to afford
monoanionic tridentate ligands. All prepared complexes gave ethylene trimerization catalysis with varying
degrees of activity upon activation with both MAO and AlR3/B(C6F5)3. The results of this study show
that the role of MAO during activation is one of deprotonation, Cr reduction, and cation generation. A
CrII f CrIV cationic mechanism is suggested.
ethylene trimerization when activated with MAO.10,11 The effects
of central N-donor substitution, chelate ring size, and also
changes to the tridentate donor set have been explored.12 The
most active systems arise with ligands of the type (RSCH2CH2)2-
NH, in which the S-donor is substituted with an n-alkyl group.
It was also found that a secondary amine donor was essential
for high activity, raising the possibility that the ligand is
deprotonated during catalyst activation. However, the precise
role of the cocatalyst, the mode of ligand binding, and the
oxidation state of the metal during catalysis has hitherto not
been studied.
The mechanism of ethylene trimerization is generally sup-
posed to follow a metallacyclic route,1 involving oxidative
addition of two ethylene molecules to the metal followed by
insertion of another to yield a metallacycloheptane species,
although conclusive experimental evidence for this is limited.
Jolly and co-workers13 have isolated a chromacycloheptane
species that liberates 1-hexene upon thermolysis, while Bercaw
and co-workers, and our research group, used deuterium-labeled
ethylene to probe the mechanism.6,14 Additionally, Gibson and
co-workers have recently provided evidence for large ring
1. Introduction
While the trimerization of ethylene to 1-hexene has been
known for many years,1 this reaction has gained increased
attention recently2 due to the importance of 1-hexene in the
production of linear low-density polyethylene (LLDPE). The
trimerization route largely avoids the production of undesired
olefins that conventional (full-range) olefin oligomerization
processes produce. Perhaps the best known of the ethylene
trimerization catalysts is the Chevron Phillips system that is
based on pyrrolyl-Cr complexes, which was commercialized
in Qatar during 2003.3 However, a number of other highly active
and selective systems based on Cr,4-7 and also Ti,8 have recently
been disclosed both in the open literature and in corresponding
patents. Additionally, an important advance is the selective
tetramerization of ethylene to 1-octene, which we have recently
reported for the first time.9 1-Octene is also an important
comonomer used for the production of LLDPE.
We have previously reported on the use of CrIII-PNP and
-SNS complexes as highly selective and active systems for
* To whom correspondence should be addressed. E-mail:
(9) Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.;
Maumela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S.;
Overett, M.; Slawin, A. M. Z.; Wasserscheid P.; Kuhlmann S. J. Am. Chem.
Soc. 2004, 126, 14712. Blann, K.; Bollmann, A.; Dixon, J. T.; Neveling,
A.; Morgan, D. H.; Maumela, H.; Killian, E.; Hess, F. M.; Otto, S.; Pepler,
L.; Mahomed, H. A.; Overett, M. J. (Sasol Technology) WO 04056479,
2004.
(10) McGuinness, D. S.; Wasserscheid, P.; Keim, W.; Hu, C.; Englert,
U.; Dixon, J. T.; Grove, C. Chem. Commun. 2003, 334. Dixon, J. T.; Grove,
J. J. C.; Wasserscheid, P.; McGuinness, D. S.; Hess, F. M.; Maumela, H.;
Morgan, D. H.; Bollmann, A. (Sasol Technology) WO 03053891A1, 2003.
(11) McGuinness, D. S.; Wasserscheid, P.; Keim, W.; Morgan, D.; Dixon,
J. T.; Bollmann, A.; Maumela, H.; Hess, F.; Englert, U. J. Am. Chem. Soc.
2003, 125, 5272. Dixon, J. T.; Wasserscheid, P.; McGuinness, D. S.; Hess,
F. M.; Maumela, H.; Morgan, D. H.; Bollmann, A. (Sasol Technology)
WO 03053890A1, 2003.
† Sasol Technology UK.
‡ Sasol Technology (Pty) Ltd.
University of St. Andrews.
(1) Manyik, R. M.; Walker, W. E.; Wilson, T. P. J. Catal. 1977, 47,
197. Briggs, J. R. Chem. Commun. 1989, 674.
(2) Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H. J. Organomet.
Chem. 2004, 689, 3641.
(3) Lashier, M. E. (Phillips Petroleum) EP 0780353A1, 1997.
(4) Wu, F.-J. (Amoco) US 5811618, 1998.
(5) Carter, A.; Cohen, S. A.; Cooley, N. A.; Murphy, A.; Scutt, J.; Wass,
D. F. Chem. Commun. 2002, 858.
(6) Agapie, T.; Schofer, S. J.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem.
Soc. 2004, 126, 1304.
(7) Blann, K.; Bollmann, A.; Dixon, J. T.; Hess, F. M.; Killian, E.;
Maumela, H.; Morgan, D. H.; Neveling, A.; Otto, S.; Overett, M. Chem.
Commun. 2005, 620. Blann, K.; Bollmann, A.; Dixon, J. T.; Neveling, A.;
Morgan, D. H.; Maumela, H.; Killian, E.; Hess, F. M.; Otto, S.; Pepler, L.;
Mahomed, H. A.; Overett, M. J.; Green, M. J. (Sasol Technology) WO
04056478A1, 2004.
(12) McGuinness, D. S.; Wasserscheid, P.; Morgan, D. H.; Dixon, J. T.
Organometallics 2005, 24, 552.
(13) Emrich, R.; Heinemann, O.; Jolly, P. W.; Kru¨ger, C.; Verhovnik,
G. P. J. Organometallics 1997, 16, 1511.
(8) Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Angew. Chem., Int. Ed.
2001, 40, 2516. Deckers, P. J. W.; Hessen, B. (Stichting Dutch Polymer
Institute) WO 02066405A1, 2002.
(14) Overett, M. J.; Blann, K.; Bollmann, A.; Dixon, J. T.; Haasbroek,
D.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H. J. Am.
Chem. Soc. 2005, 127, 10723.
10.1021/om0601091 CCC: $33.50 © 2006 American Chemical Society
Publication on Web 06/23/2006